Skip to main content
Log in

Computer simulations and thermodynamics of anisotropic nanoparticles at fluid interfaces

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the applicability of thermodynamic models to investigate the physical behavior of nanoscale objects at liquid-liquid interfaces. The applicability of such models to these small scales is not obvious, since they ignore the molecular nature of the solvent, as well as the finite width and fluctuations of the interface. We focus our study on anisotropic nanoparticles that can interact with an external field through an embedded dipole moment. Using Monte Carlo simulations we show that thermodynamic models defined in terms of a few material properties very accurately describe the behavior of nanoparticles in a wide range of conditions; field strength, nanoparticle-fluid interactions and nanoparticle size and anisotropy. Our results show that thermodynamics offers a powerful approach to investigate the physical behavior of nanoscale objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pieranski, Phys. Rev. Lett. 45, 569 (1980)

    Article  ADS  Google Scholar 

  2. K. Zahn, G. Maret, Phys. Rev. Lett. 85, 3656 (2000)

    Article  ADS  Google Scholar 

  3. A.R. Bausch, N.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299, 1716 (2003)

    Article  ADS  Google Scholar 

  4. G.A. Ozin, A. Arsenault, Nanochemistry: A Chemical Approach to Nanomaterials (RSC Publishing, Cambridge 2005)

    Google Scholar 

  5. T.L. Hill, Thermodynamics of Small Systems (Dover, Mineola N.Y., 2002)

    Google Scholar 

  6. H. Lehle, M. Oettel, S. Dietrich, Europhys. Lett. 75, 174 (2007)

    Article  ADS  Google Scholar 

  7. H. Lehle, M. Oettel, Phys. Rev. E 62, 5263 (2007)

    Google Scholar 

  8. F. Bresme, M. Oettel, J. Phys.: Condens. Matter. 19, 413101 (2007)

    Article  Google Scholar 

  9. J. Faraudo, F. Bresme, J. Chem. Phys. 118, 6518 (2003)

    Article  ADS  Google Scholar 

  10. F. Bresme, J. Faraudo, J. Phys.: Condens. Matter. 19, 375110 (2007)

    Article  Google Scholar 

  11. Y. Lin, H. Skaff, T. Emrick, A.D. Dinsmore, T.P. Russell, Science 299, 226 (2003)

    Article  ADS  Google Scholar 

  12. F. Bresme, N. Quirke, Phys. Rev. Lett. 80, 3791 (1998)

    Article  ADS  Google Scholar 

  13. F. Bresme, N. Quirke, J. Chem. Phys. 110, 3536 (1999)

    Article  ADS  Google Scholar 

  14. F. Bresme, N. Quirke, Phys. Chem. Chem. Phys. 1, 2149 (1999)

    Article  Google Scholar 

  15. C. Powell, N. Fenwick, F. Bresme, N. Quirke, Colloids, Surf. A 206, 241 (2002)

    Article  Google Scholar 

  16. J.G. Gay, B.J. Berne, J. Chem. Phys. 74, 3316 (1999)

    Article  ADS  Google Scholar 

  17. D.J. Cleaver, C.M. Care, M.P. Allen, M.P. Neal, Phys. Rev. E 54, 559 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bresme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bresme, F. Computer simulations and thermodynamics of anisotropic nanoparticles at fluid interfaces. Eur. Phys. J. B 64, 487–491 (2008). https://doi.org/10.1140/epjb/e2008-00032-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00032-2

PACS

Navigation