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Abstract. We study numerically the effect of sequence heterogeneity on the thermodynamic properties
of a Poland-Scheraga model for DNA denaturation taking into account self-avoidance, i.e. with exponent
cp = 2.15 for the loop length probability distribution. In complement to previous on-lattice Monte Carlo
like studies, we consider here off-lattice numerical calculations for large sequence lengths, relying on efficient
algorithmic methods. We investigate finite size effects with the definition of an appropriate intrinsic length
scale x, depending on the parameters of the model. Based on the occurrence of large enough rare regions, for
a given sequence length N , this study provides a qualitative picture for the finite size behavior, suggesting
that the effect of disorder could be sensed only with sequence lengths diverging exponentially with x. We
further look in detail at average quantities for the particular case x = 1.3, ensuring through this parameter
choice the correspondence between the off-lattice and the on-lattice studies. Taken together, the various
results can be cast in a coherent picture with a crossover between a nearly pure system like behavior for
small sizes N � 1000, as observed in the on-lattice simulations, and the apparent asymptotic behavior
indicative of disorder relevance, with an (average) correlation length exponent νr ≥ 2/d (=2).

PACS. 64.60.Fr Equilibrium properties near critical points, critical exponents – 82.39.Pj Nucleic acids,
DNA and RNA bases – 02.60.Cb Numerical simulation; solution of equations

1 Introduction

The discovery of the DNA double-helical structure, some
50 years ago, motivated the elaboration of the helix-coil
model to account for the separation of the two strands,
on physical bases [1–3]. The importance of this model
from the biological point of view is obvious, since pro-
cessing of the genetic information involves precisely the
separation of the strands. Of course, under physiological
conditions, the opening of the double-helix is not under
the effect of temperature, but the differential stabilities in
DNA sequences, as revealed by helix-coil analysis, could
be sensed by biological effectors, such as proteins, under
various types of constraints. The successful development
of the helix-coil denaturation model required appropriate
elaborations for the physics and the algorithmics, allow-
ing accurate tests through comparisons with experimental
data (melting curves). This field, very active in the sixties
and seventies, has benefited recently from a renewed in-
terest both from the biological side, for example in the
context of genomic analysis, and from the physics side,
notably in relation with questions relevant to the order of
the transition in the homogeneous case and the effect of
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sequence heterogeneity. In the light of these still debated
issues, both from the theoretical and the numerical points
of view, the main focus of the present work is the numer-
ical investigation of the relevance of disorder in a realistic
DNA denaturation model à la Poland-Scheraga, in which
self-avoidance between loops and the rest of the chain is
also taken into account. In what follows, before further
detailing the particular system considered and the open
questions, we first recall briefly the general background in
terms of biological models, numerical methods and previ-
ous results.

Basics for DNA denaturation

DNA denaturation is an entropy driven transition, in
which at some critical temperature Tc the energy loss ∆E
with the opening of base pairs is compensated by the en-
tropic gain T∆S associated with the increased number of
configurations accessible to the separated single strands.
Experimentally, it is found that Tc depends on different
factors, in particular the pH of the solution and the GC
composition of the sequence, related to the ratio of the
Guanine-Cytosine, GC, pairs to the Adenine-Thymine,
AT, pairs. For homogeneous sequences, for pH∼ 7, typi-
cal values for Tc are Tc,GC ∼ 110 ◦C and Tc,AT ∼ 70 ◦C,
respectively for GC and AT cases. Such differences reflect
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of course the fact that the pairing of Guanine to Cytosine
involves three hydrogen bonds whereas that of Adenine to
Thymine involves only two.

For a given biological sequence of length N , here iden-
tified, following AT and GC pairs, by the coupling energies
{εi, i = 1, . . . , N}, the denaturation transition can be fol-
lowed with UV absorption. Correspondingly, the fraction
θε(T, N) of closed base pairs, which is the order parame-
ter of the transition in the thermodynamic limit N → ∞,
can be measured in such experiments based on differential
absorptions for closed and open base pairs. The result-
ing curves display usually multi-stepped structures, with
abrupt variations on small (sequence-depending) temper-
ature ranges around Tc. Therefore, for a biological se-
quence of fixed length, the finite size order parameter
θε(T, N) varies from zero to one (associated with com-
plete denaturation), with a sequence-dependent behavior.
Accordingly, the derivative with respect to temperature,
−dθε(T, N)/dT , displays typically a series of sharp peaks.

From the theoretical point of view, modeling DNA de-
naturation was essentially following two main directions:
(1) for biological applications, in relation with melting
experiments (sixties, seventies), sequence-dependent algo-
rithmic elaborations for the handling of realistic physical
models [2,4,5], concerning notably the representation of
denaturation loops; and (2) for the study of the under-
lying physics, detailed characterizations of the properties
for pure systems, neglecting sequence-specificity [6–16].

Physics of DNA denaturation for homogeneous sequences

DNA denaturation is understandable in the framework
of almost unidimensional systems [18], and it is there-
fore associated with a peculiar kind of transition. In
fact, the first models displayed no thermodynamic sin-
gularity [2], as they corresponded to 1d Ising mod-
els with only short-range (nearest-neighbor) interactions,
with open and closed base pair states represented by an
Ising spin. It was subsequently shown, notably by Poland
and Scheraga [6] (PS, in what follows), that the observed
denaturation behavior can indeed be described in terms
of a simple 1d model, the helix-coil model, that consists of
alternating regions of contiguous open base pairs (coiled
regions or loops) and double-stranded ones (helical seg-
ments). In this model the transition in the thermodynamic
limit is made possible through the adoption of appropriate
long-range entropic weights for the single-stranded loops.

More recently, several other models have been consid-
ered and studied, using in particular more realistic po-
tential forms between base pairs [8,9]. Since sharp tran-
sitions are observed experimentally, with abrupt changes
in θε(T, N) on small temperature ranges, it is expected
that a model, accounting correctly for such results, should
undergo a first order transition in the pure case. In-
deed, this point has been studied rather extensively re-
cently [3,8–17]. In particular, it was demonstrated [10]
that the transition is of first order in pure PS models
in which excluded volume effects for loops are not only
with themselves, but also with the rest of the chain. No-
tably, with the probability distributions for loops with
lengths l at the critical point following a power law,

P (l, Tc) ∝ 1/lcp , the transition is of first order for cp ex-
ponents larger than 2 [6,7,18] (see also [3]). It was shown
that in three dimensions, with the two strands described
as self-avoiding walks (SAWs), the value for the exponent
is cp � 2.15 [10,12,14,15]. In comparison, cp = 3/2 for
random walk (RW) loops [6] and cp = 1.76276(6) for SAW
loops, with excluded volume interactions with the rest of
the chain neglected [7,19].

Biological and algorithmic backgrounds for sequence-
specific DNA denaturations

The algorithmic problem was initially encountered for
the implementation of sequence-specific calculations al-
lowing notably experimental/theoretical comparisons in
the study of melting curves. It seemed natural, in the
beginning, to resort to transfer matrix formalisms as de-
veloped in physics because of the Ising-type formulation
of the problem [2]. Indeed, neglecting loop-entropy long-
range effects, the calculation of the partition function for
a sequence of size N can be expressed simply as the prod-
uct of N 2× 2 matrices. The extension to realistic models
was at first handled through extended transfer matrices,
of sizes growing up to N ×N , for the proper description of
interactions throughout the lengths of the sequences [2].
Because of calculation burdens associated with such ma-
trix sizes, alternative formulations were sought for the im-
plementation of realistic models with affordable compu-
tation times. Representing the culmination of a series of
developments, through some twenty years, an appropri-
ate algorithmic solution was proposed in 1977 by Fixman
and Freire [4] (FF method), in which calculation efficiency
was not at the price of oversimplifications in the physics,
but relied instead on the numerical representation of the
long-range effect as a multiexponential function. In this
formulation, the time complexity for the evaluation of a
complete denaturation map for a sequence of length N
is essentially proportional to N . This reduced complex-
ity is to be compared with the intrinsic complexity of the
model scaling as N3, if we were to consider exact one-way
calculations along the sequence.

In this background, no generalizations were proposed
for the ideas in the FF for a long period of time, possibly
because of the formulation of this method in the prolonga-
tion of an algorithm by Poland [20], expressed in the rather
specialized context of conditional probabilities recursions
specific to the linear DNA helix-coil model. As a matter
of fact, the only applications of the FF concerned the im-
plementation of the algorithms in computer programs, for
DNA melting calculations (such as in the POLAND [21]
or in the MELTSIM programs [22]). However, upon re-
visiting the original derivations, it appears that the idea
associated with the multiexponential representation, re-
lying on the fundamental property of exponential func-
tion, corresponds to a powerful concept amenable to many
generalizations for realistic models with long-range ef-
fects. Accordingly, based on explicit partition function cal-
culations, the SIMEX (SIMulations with EXponentials)
method was first derived as a reformulation of the FF
for the linear helix-coil model [5], with further generaliza-
tions to higher-order models involving several, mutually
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coupled, long-range effects [23,24]. For such systems, with
two or more long-ranges, the reductions of complexities
by several orders of magnitudes can be associated with
calculation times reduced by million folds. The basic con-
cepts for higher-order models were originally illustrated
with a circular DNA helix-coil model-problem involving
two long-range contributions [23]. The corresponding prin-
ciples were further transposed to a linear helix-coil model
with non-symmetrical loops [24].

On the experimental side, linear helix-coil models
were successfully compared with experimental melting
curves [22]. In the beginning, one of the motivations
in the elaboration of DNA denaturation models was to
ask the question of possible relations between genetics
(coding/non-coding) and physical (helix/coil) segmenta-
tions, because of the importance of the separation of the
two strands in the processing of the genetic information.
With little genomic sequences available at the end of the
seventies and beginning of eighties, no clearcut conclu-
sions were reached for such relations. More recently, with
the availability of complete genomes, it was possible to
resume such investigations on much larger bases, demon-
strating variable correspondences between the two types
of segmentations, depending on the genomes [25–28]. For
genomes with very sharp correlations it was even possible
to propose ab initio gene identification methods purely on
physical bases [26].

Physics of DNA denaturation with disorder

On the physical side, DNA denaturation models are as-
sociated with important open questions such as, notably,
the relevance of sequence heterogeneity for the thermody-
namic limit behavior. At the beginning of the seventies,
it was noted by Poland and Scheraga [2] that “sequence
heterogeneity dramatically broadens the transition”, but
it is only recently that such problem has been addressed
on more rigorous bases and the transition in disordered PS
models with cp > 2 was also investigated [29–34]. Indeed,
in the homogeneous case, such systems exhibit peculiar
first order transitions characterized by a diverging corre-
lation length, and it is therefore not clear to which extent
general theoretical results on the effect of disorder [35–37]
can be applied. The question has been addressed both with
analytical [32–34] and numerical approaches, with either
off-lattice [29,30] or on-lattice [31] implementations in this
latter case. It appears however hard to reconcile these var-
ious results. The off-lattice studies of [29,30], involving
very large chain lengths, suggest a peculiar transition, of
first order as in the pure case but not obeying usual fi-
nite size scaling and exhibiting two different correlation
length exponents, associated respectively with typical and
average quantities. On the other hand, the Monte Carlo
like numerical simulations in [31], limited to small chain
lengths, agree with a second order transition in the pres-
ence of disorder, though it was not possible to rule out
completely a transition still of first order. Finally, from
the analytical standpoint, under quite general hypotheses
encompassing PS models with cp > 2, it was shown that
the transition is expected to be at least of second order
and possibly smoother [32–34].

In the background above, in addition to their relevance
to experimental DNA denaturation, PS models with se-
quence heterogeneity represent interesting toy-models for
addressing general open questions relative to the propri-
eties of random fixed points. The detailed study of such
systems could also help elaborating the correct approaches
to be used in the interpretation of data on disordered mod-
els. In this direction, we perform here a numerical analysis
of a disordered PS model with cp = 2.15. Relying on ap-
propriate algorithmic formulations (SIMEX) we consider
long sequences. With the definition adopted for the model,
and the choices for the parameter values, the calculations
are made directly comparable with previous on-lattice re-
sults [31]. In addition, the observed behavior should be
also related to that found in the previous off-lattice studies
of a different disordered PS model with cp = 2.15 [29,30],
in which the same multiexponential representation for the
long-range loop entropy law was adopted.

Our findings show the existence of very strong cor-
rections to scaling. Moreover it appears that, for a given
size, the effect of disorder is qualitatively described by
an appropriately defined intrinsic length scale x depend-
ing on model parameters. These observations provide a
possible explanation for the discrepancies between previ-
ous results [29–31], as well as for an apparent dependence
of the evaluated critical exponents on model parameters
noted in [31]. In fact, in the frame of the picture proposed
here, the size at which the effect of disorder becomes ev-
ident could diverge exponentially with x. More precisely,
for the value x = 1.3 chosen for the present detailed study,
it is possible to observe a crossover between a nearly pure
system like behavior, consistent with the one observed in
simulations [31], and the apparent asymptotic one. With
corrections to scaling taken into account, the model clearly
displays a smooth transition, corresponding to a value for
the correlation length exponent νr ≥ 2/d (=2). Neverthe-
less, since our results refer to average quantities, they do
not rule out the possibility suggested in [29,30,38,39] of
a transition governed by two different correlation lengths.
The analysis for the clarification of this point is left for a
forthcoming work [40].

2 Models à la Poland-Scheraga

2.1 The pure case and the role of the exponent cp

Pure PS models for DNA denaturation are described in a
rather extensive literature, and in particular the ingredi-
ents which make the transition of first order are discussed
in several recent works [3,10–16]. Here we will only re-
call results for linear PS models with symmetric loops, in
which one fully takes into account self-avoidance through
an appropriate choice of the loop length distribution prob-
ability exponent cp.

The position of a base pair along the sequence is la-
beled by i (i = 1, . . . , N) and its configurational state is
represented by si, with si = 1 for a closed pair and si = 0
for an open pair. In the corresponding on-lattice represen-
tation, the two strands in the model can be visualized as
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two interacting RWs with the same origin in d dimensions.
A pair is in the closed state if and only if the two bases are
in the same position i along the two strands and occupy
the same lattice point [13] (RW-DNA). One can write the
canonical partition function for the system in the form:

ZN =
∑

E

N (E)e−β E , (1)

where N (E) is the number of configurations with the same
total energy E and β = 1/T is the inverse temperature,
taking Boltzmann constant kB = 1 for simplicity.

The contribution of a single base pair in the closed
state to the total energy E is ∆E = −ε, independent
from the position i in the pure case. The number of con-
figurations of a closed segment of length n increases as
µn and therefore its contribution to the total entropy
S(E) = logN (E) is ∆S = n log µ. Here µ is a parameter
of the model, interpretable as the on-lattice connectivity
constant (µ = 2d for d-dimensional RWs on a cubic lat-
tice). A denatured region of length l is associated with a
single-stranded loop of length 2l, and the corresponding
number of configurations is given by µ2l/(2l)cp . The factor
1/(2l)cp takes into account the fact that the two separated
chains have to meet again at some distant point, and the
relation cp = d/2 holds for d-dimensional RWs.

Assuming that the first and the last base pairs are
always coupled, a given configuration of the system is
described by the lengths of the closed segments {nj}
and by those of the denatured loops {lk > 2}, with∑

j nj +
∑

k(lk − 1) = ntot + ltot = N . Its energy is
E = −ε

∑
j nj = −εntot, only depending on ntot. There-

fore, in the partition function, the degeneracy factor N (E)
includes both the entropic contribution of segments µntot

and that of loops µ2ltot
∏

k 1/(2lk)cp , the latter being to be
summed over all the possible sets {lk > 2} associated with
a given total length ltot =

∑
k(lk − 1). Correspondingly,

the partition function can be also written as:

ZN = e2N log µ
∑

ntot

entot(βε−log µ)
∑

{lk>2}

∏

k

1
(2lk)cp

= e2N log µ
∑

{nj}

∑

{lk>2}

∏

j

enj(βε−log µ)
∏

k

1
(2lk)cp

. (2)

It can be noted that the factor e2N log µ contributes an
additive constant to the entropy and it is therefore not
relevant for the description of the thermodynamics of the
system. In what follows, we study properties of Z∗

N =
ZN/e2N log µ. Accordingly, the number of loops of length
lk is taken equal to 1/(2lk)cp and a negative contribution
to the entropy ∆S = − logµ is associated to each base
pair in the closed state. It is seen qualitatively that the
possible change in the thermodynamic limit behavior oc-
curs at the temperature for which βcε ∼ log µ. From the
last expression in (2) it is moreover clear that, in the com-
putation of the grand canonical partition function Z, the
contributions of helical segments and loops are decoupled

and one obtains a geometric series [2,6,7,12,18]:

Z =
∑

N

zNZN

=
∑

ρ

{[ ∞∑

n=1

znen(βε−log µ)

][ ∞∑

l=2

zl

(2l)cp

]}ρ

=
ZSZL

1 −ZSZL
, (3)

where we introduced the fugacity z and ZS and ZL refer
to the segment (helical) and loop (coil) grand partition
functions respectively:

ZS =
∞∑

n=1

znen(βε−log µ) =
ze(βε−logµ)

1 − ze(βε−logµ)
, (4)

ZL =
∞∑

l=2

zl

(2l)cp
. (5)

Since the behavior for N → ∞ is dictated by the fugacity
value z∗ corresponding to the pole nearest to the origin,
the system undergoes a phase transition when a critical
temperature Tc is found below which the zero of the de-
nominator becomes smaller than the smallest pole of the
numerator. The possibility of the transition and its order
both depend on the value of the exponent cp [2,6,7,12,18].
In detail, for cp < 1 there is no thermodynamic singular-
ity, whereas for cp > 1 the following situations must be
distinguished: a smooth transition for 1 < cp < 3/2 with
a specific heat exponent αp < 0, a second order transi-
tion for 3/2 ≤ cp ≤ 2 and finally a first order transition
for cp > 2. In fact, these distinctions can be understood
considering the properties of ZL, i.e. those of the distribu-
tion probability of the loop length at the (possible) critical
point P (l, Tc) = 1/(2l)cp:

∑

l

P (l, Tc) = ∞ for cp ≤ 1 (6)

∑

l

lP (l, Tc) =
{∞ for cp ≤ 2

const. for cp > 2.
(7)

In the case cp ≤ 2, the mean length 〈l〉 for loops at the
critical point diverges and the system exhibits large coiled
regions, in which most of the bases are involved. On the
contrary, for cp > 2, the mean loop length at Tc is finite
and correspondingly it is possible to show that the den-
sity of closed base pairs θ(T, N) = 〈n〉/N , and therefore
the energy density, varies abruptly in the thermodynamic
limit, from the value zero at high temperatures to a fi-
nite value at Tc. In detail, when approaching the critical
point from the low temperature (helical) phase, one finds
[2,6,7,12,18]:

θ(T ) ≡ lim
N→∞

1
N

N∑

i=1

〈si〉 ∝
{

(Tc − T )
2−cp
cp−1 for 1 < cp ≤ 2

(Tc − T )0 for cp > 2.

(8)
For example, the RW-DNA model in three dimensions
exhibits a second order transition with αp = 0, since
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cp = 3/2, whereas in five dimensions it undergoes a first
order transition, since cp = 5/2, as confirmed both by
exact computations of thermodynamic quantities and by
on-lattice numerical simulations [13].

2.2 Exponent value cp = 2.15

All interactions between different loops and helical seg-
ments are neglected in classical calculations of the grand
canonical partition functions for helix-coil models. It is
possible to account for self-avoidance of each loop with
itself through the appropriate choice of the exponent
cp = 1.76276(6) [7,19], corresponding roughly to the
value adopted usually for comparisons with experimental
data [22]. More recently, it was demonstrated that self-
avoidance of the loops with the rest of the chain can be
also taken into account, and that intriguingly the pure PS
models exhibit first order transitions in this case [10–12].
The exponent cp, corresponding to a self-avoiding loop em-
bedded in a self-avoiding chain, can be predicted from con-
formal theory results [41], and in particular it was found
that cp � 2.15 in three dimensions, the transition being of
first order also in d = 2. It is notable that such determi-
nation provides the appropriate value of cp to be used as
an input in off-lattice calculations.

In the Monte Carlo like simulations, one studies an
on-lattice model (SAW-DNA) in which self-avoidance is
completely taken into account, by considering two inter-
acting SAWs, with two monomers allowed to occupy the
same lattice point if and only if their positions along the
two chains are identical, thus representing complementary
base pairs [13]. In the pure 3d case, it was found that this
system exhibits a first order transition, with the maxi-
mum of the specific heat diverging linearly with the chain
length. It was subsequently shown [14,15] that the value
of the exponent describing the probability distribution for
the loop lengths at the critical point is in perfect agree-
ment with the theoretical prediction, cp � 2.15. An off-
lattice pure PS model with cp = 2.15 was also studied
numerically [42], finding the same scaling behavior than
in 3d SAW-DNA, apart from the strong finite size correc-
tions which appear to be more important in the on-lattice
situation.

Even though of first order, the transition is charac-
terized by a diverging correlation length, which can be
identified from the behavior of P (l, T ) [10,12,15]:

P (l, T ) ∝ e−l/ξ(T )

(2l)cp
(9)

with
ξ(T ) ∝ (T − Tc)−νp for T → T−

c , (10)

where νp = 1 for cp > 2 and νp = 1/(cp−1) for second or-
der (or smoother) transitions. It can also be predicted that
the free energy density f(T ) takes the value zero in the
high temperature phase and that it behaves proportion-
ally to 1/ξ(T ) for T → T−

c , leading again to the behavior
of the energy density and of the order parameter for dif-
ferent cp values given in (8). Therefore, the hyperscaling

relation αp = 2 − νp is clearly fulfilled, both for cp ≤ 2
and for the first order (αp = 1) case.

2.3 Effect of disorder: previous results

Disorder is introduced to account for sequence heteroge-
neity, with parameter values depending on the chemical
nature of base pairs (AT or GC) at a given position along
a sequence. There are a few studies on the effect of disor-
der on general properties of DNA denaturation models in
which self-avoidance is neglected [43–47]. Previous numer-
ical works on disordered models à la PS were mainly for
comparison of the predictions with experimental data and
genetic signals [22,25–28] and for the study of the effect
of base pair mismatches [24], where one usually takes also
into account the stacking contributions, with the coupling
energies depending on the chemical nature of base pairs at
positions i and i + 1. For comparisons with experimental
melting curves, it is moreover necessary to take into ac-
count the possibility for complete dissociation of the two
strands in the molecule [2,48]. We also notice that biolog-
ical sequences exhibit long-range correlations and strong
variability in GC compositions, both according to genomes
and within chromosomes. Letting aside for the present
such sophistication, we sum up some recent results for sim-
ple disordered models à la PS with self-avoidance, such as
those considered in off-lattice [29,30] and on-lattice [31]
studies, which allow nevertheless to capture essential fea-
tures of the effect of disorder.

In these various works, disorder enters only through
the position dependent contribution of a closed base pair
to the total energy. In detail, the {εi} are quenched ran-
dom variables distributed following a binomial probability,
corresponding to GC composition equal to 1/2:

P (ε) =
1
2

[δ(ε − εAT ) + δ(ε − εGC)] , (11)

with εAT < εGC . One is interested in the thermodynamic
properties of the quenched free energy density:

f(T ) = lim
N→∞

fε(T, N) = lim
N→∞

fε(T, N)

= − lim
N→∞

1
βN

log ZN,ε, (12)

where, as usual, (·) denotes the average over disorder and
fε(T, N) is a self-averaging quantity in these models [32].

Generally speaking it is known, from the theoretical
point of view, that disorder can modify very significantly
the fixed point of a system, and therefore its critical expo-
nents. In what follows, the notations with subscripts p and
r refer to the (possibly different) pure and random system
fixed points, respectively. A series of results [35–37], and
notably the well known Harris criterion [35], demonstrate
that disorder is relevant as soon as the specific heat ex-
ponent fulfills the condition αp > 0. Correspondingly, in
the presence of disorder, the transition becomes smoother
and it is in particular expected that αr ≤ 0, i.e., from
the hyperscaling relation, a correlation length exponent
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νr ≥ 2/d [49–51]. It is however important to stress that
these results are obtained essentially for magnetic systems
and it is not clear to which extent they are relevant to
the case here considered, concerning interacting polymers
undergoing a first order transition characterized by a di-
verging correlation length.

An analysis in terms of pseudo-critical tempera-
tures [52] was applied recently to disordered PS mod-
els with different cp values [29,30,38,39,53,54]. In these
studies, an appropriate sample-dependent Tc(ε, N) was
defined and measured, looking in particular at the asso-
ciated probability distribution. The results point towards
irrelevance of disorder for cp = 3/2, corresponding to the
marginal case αp = 0. On the contrary, relevance of disor-
der was found for cp > 3/2. Importantly, peculiar behavior
was observed for the value cp = 2.15, whereas the situation
appears to be clear for cp = 1.75. Indeed, for cp = 1.75,
compatible estimates for νr ∼ 2.7 (>2/d = 2) were ob-
tained from the scaling of the average pseudo-critical tem-
perature Tc(N) and from that of (the square root of) its
fluctuations δTc(N). In the case cp = 2.15, instead, a scal-
ing of the average critical temperature Tc(N) ∼ 1/N was
reported, suggesting a still first order transition with ex-
ponent νr,1 = 1. However it was also found a scaling for
the fluctuations following δTc(N) ∼ 1/N1/2, which was
associated to a different exponent νr,2 = 2 (=2/d). It
was then suggested [29,30,38,39] that these observations
are compatible with a system still exhibiting a first order
transition but in which scaling laws are no more fulfilled,
characterized by two different correlation lengths: a typical
one, ξ1 ∼ 1/|T − Tc|, describing the behavior of a typical
sample in the thermodynamic limit, with νr,1 = 1, and an
average one, ξ2 ∼ 1/(T − Tc)2, describing the behavior of
average quantities, dominated by rare fluctuations, with
νr,2 = 2/d = 2. The resulting two-sided scenario is there-
fore that disorder is irrelevant to the typical sample and,
in the same time, the obtainment of the νr,2 value is in
agreement with the theoretical expectations [49–51].

By contrast, usual finite size scaling analysis of
Monte Carlo like simulations results on a 3d disordered
SAW-DNA model (DSAW-DNA) [31], suggested a transi-
tion governed by an (average) correlation length exponent
νr � 1.2. However, in this study, average energy curves
were observed to cross at the same point within the er-
rors in the estimations, and accordingly the possibility
νr = 1 = νp could not be completely ruled out. The find-
ings were further confirmed by the analysis of the behavior
of Pε(l, T ) at the critical point, which led to the compati-
ble value cr � 1.9 � 1+1/νr when considering the largest
sizes and taking into account the presence of a finite cor-
relation length. But again, particularly with the smallest
chain lengths, estimations cr > 2, still compatible with a
first order transition, were obtained. It is noticeable that
the affordable sizes in Monte Carlo like studies are signifi-
cantly smaller (factors of order ∼2000) than the sequence
lengths accessible to off-lattice recursive canonical parti-
tion function calculations for PS models.

Finally, in recent theoretical works based on a proba-
bilistic approach [32–34], it was shown for a general class of

interacting polymer models that the transition becomes at
least of second order in the presence of disorder. The frame
of this approach covers the PS models with cp > 3/2, in-
cluding the case cp > 2 with corresponding first order
transition in the pure system. Accordingly, these conclu-
sions are expected to also cover the 3d DSAW-DNA case.
Following such studies, it is expected that νr ≥ 2 both for
average and typical quantities, though the possibility of
different correlation lengths is not ruled out [34]. On the
other hand, according to other theoretical results in which
self avoidance is neglected [46,47], disordered models à la
PS could undergo a definitely smoother transition, corre-
sponding to an essential singularity in the free energy.

2.4 A possible scenario for the finite size behavior

Before presenting our numerical findings, it is worth
discussing qualitative features expected, at fixed chain
lengths N , for the behavior of disordered PS models. As
previously recalled, disorder should be relevant to these
models as soon as cp > 3/2. Moreover, on general grounds,
one can argue that the behavior of a system near the
transition point is governed by given critical exponents
which do not depend on model details. Correspondingly,
one would expect that both the form of P (εi) and the pre-
cise choices for the parameters (here R = εGC/εAT , µ and
GC composition) should not correspond to different ther-
modynamic limit singularities. On the other hand, such
choices could have strong influence on finite size effects.

The disordered PS model in [29,30] and the 3d DSAW-
DNA in [31] involve the same cp = 2.15, either as a di-
rect input for the recursive calculations or as consequence
of the implementation of self-avoidance in the simulated
model. Nevertheless, there is a first noticeable difference
between the two systems studied1, as the off-lattice calcu-
lations were inspired from a wetting transition model [54],
in which it is forbidden for two consecutive elements to
be in the closed state simultaneously (i.e., in our nota-
tion, if si = 1 then si+1 = 0). Also the connectivity con-
stant µ is not the same, since it was fixed to the value
µ = 2 in [29,30], whereas it is an output of the model
in the on-lattice simulations, and one finds µ � 4.7 for
SAWs on a 3d cubic lattice. In addition, the two stud-
ies involved significantly different R values. In [29,30] the
choice R � 1.098 was adopted, for obtaining a critical
temperature ratio Tc,GC/Tc,AT close to the experimental
value. On the other hand, in [31], the value R = 2 was
studied in detail and the values R = 4 and R = ∞ (cor-
responding to the choice εGC = 1 and εAT = 0) were also
considered. In the latter study, preliminary results sug-
gested that the (average) correlation length exponent νr

could increase with R, ranging from νr � 1.18 for R = 2
to νr � 1.33 for R = ∞.

For proper understanding of these findings, and for a
qualitative analysis of the expected finite size behavior,

1 We thank Thomas Garel for pointing this difference to our
attention.
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it can be important to consider in some detail the poten-
tial key role of rare regions in the generated sequences.
Indeed, the possible presence of such regions, of large
enough size, can explain the presence of strong correc-
tions to scaling, which could therefore depend both on
model details and on the precise choice for the parame-
ters. It can be noted that temperature and disorder appear
only in the πi = esi(βεi−log µ) terms in the partition func-
tion, which are clearly invariant under the transformation
(εi → αεi, T → αT ). Moreover, in the pure system, the
transition occurs around the temperature Tc,p ∼ ε/ logµ,
at which the energetic contribution for the two bound
chains is of the same order than the entropic loss. In the
presence of disorder, for a given sequence, it is expected
to observe the multi-step behavior in θε(T, N) displayed
by experimental DNA denaturation curves. This results
from the presence of regions with different local contents
in terms of GC to AT ratios, associated accordingly with
different local melting temperatures.

In the simplest extreme case, one imagines two re-
gions A and B, of about the same length L, completely
dominated by AT and GC compositions respectively. In
such situation, the local transition in region A is driven by
εAT energies, with local critical temperature Tc,loc(A) ∼
Tc,AT ∼ εAT / logµ, whereas the local transition in region
B is associated with the higher local critical temperature
Tc,loc(B) ∼ Tc,GC ∼ εGC/ log µ ∼ RTc,loc(A). In this il-
lustrative example, for a given temperature, the contribu-
tions in the partition function of total πtot

A,B factors cor-
responding to the configurations with base pairs in the
closed state, will be significantly different for A and B re-
gions. One obtains, for T = Tc,loc(B) and si = 1∀i ∈ A, B:

πtot
A =

∏

i∈A

πi = eL(βc,loc(B)εAT −log µ) ∼ O(1),

πtot
B =

∏

i∈B

πi = eL(βc,loc(B)εGC−log µ) ∼ e−L/x. (13)

Since, whereas βc,loc(B)εGC − log µ ∼ 0, one has

βc,loc(B)εAT − log µ ∼ − logµ
R − 1

R
≡ − 1

x
, (14)

defining the parameter x. From these expressions it is pos-
sible to argue that the larger the value of L with respect
to x the more the effect of disorder will be felt by the fi-
nite size system, i.e. the difference between the weights of
configurations corresponding to closed A and B regions in
the partition function will be higher. On the other hand,
the probability for such an extreme case in a particular se-
quence of size N is quite small. With the choice for P (ε) in
(11), large N and L values and 2L  N  L, the proba-
bility of L contiguous elements of the same type is simply
∼N/2L. Therefore this probability, though approaching
1 in the thermodynamic limit for any finite L, becomes
rapidly negligible with increasing L for fixed chain length
N . Following these considerations, for the finite size sys-
tem to feel the effect of disorder, the chain lengths neces-
sary for observing rare regions with L  x could be not
reachable for large x values. For more quantitative analy-
sis, at least in the extreme case considered, let us suppose

that at the length scale N1 a region of size L1 is observed
for the parameter value x1, such that L1/x1  1, with non
negligible probability N1/2L1. Then, in order to make the
same observation for x2 > x1, it will be necessary to con-
sider length scales of order N2 ∼ N1e

(x2/x1−1)L1 log 2, thus
involving exponential increases with the ratio x2/x1 for
the sequence lengths N .

For attempting to understand the role of the long-
range loop entropic effect, one can impose that, at the
temperature Tc,loc(B), the weight of the configuration as-
sociated with region A in the closed state is significantly
smaller than that of the configuration associated with an
open region corresponding to a single loop (of size L),
getting the condition L/x  cp log L. Correspondingly,
one can argue that, with increasingly larger cp values, in-
creasingly larger rare region lengths will be necessary for
observing cooperative melting behavior at different tem-
peratures. Moreover, the considered extreme case seems
particularly appropriate for a qualitative description when
cp > 2. Here, the first order character of the transition in
the pure system and the corresponding favored formation
of small loops suggests that larger differences of local AT
to GC content ratio are necessary for obtaining different
local melting temperatures.

In conclusion, important finite size corrections to scal-
ing are expected qualitatively, which could in particular
depend strongly on the parameter x introduced above,
involving both the energy ratio R and the connectivity
constant µ. Specifically, the effect of disorder on the be-
havior of the system could become evident only for chain
lengths diverging exponentially with x. This parameter
seems therefore to play the role of an intrinsic length scale
for the rare regions, corresponding to the logarithm of an
intrinsic length scale for the system itself.

Setting aside other differences, the parameter choices
in [29,30] correspond to x ∼ 15, whereas in [31] they give
x � 1.3. It is accordingly possible that results in the two
studies can be explained following the described picture,
on the basis of the underlying finite size effects. It is never-
theless to be noted that in [29,30] very large sequences, up
to N ∼ 2 000 000, were considered. The present qualita-
tive picture could anyway explain the observations in [31],
for an apparent dependence of νr on R, as an increase in
R at fixed log µ amounts to a decrease in x. It is pos-
sible that the chain lengths N ≤ 800 affordable in the
simulations were not large enough and that also the value
νr � 1.33 obtained with R = ∞ was affected by finite size
corrections to scaling, being therefore to be interpreted as
a lower bound for the (asymptotic) νr.

3 Numerical study

3.1 Details of the model

We consider the disordered PS model, with cp = 2.15,
described by the canonical partition function:

Z∗
N,ε =

∑

{si}

∏

i

esi(βεi−log µ)
∏

k

1
(2lk)cp

, (15)
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where
∏

k runs over all the loop lengths lk > 2, as-
sociated with a given configuration of the {si}. Impor-
tantly, here and in the following we only impose the
condition

∑
k(lk − 1) +

∑
i si = ltot + ntot ≤ N , thus

allowing for free ends, with separated strands not in-
volved in a loop at one end-extremity of the sequence.
Such free-ends are not expected to modify the thermody-
namic limit behavior [10,12,29], but the high temperature
phase of the model will consist accordingly of two strands
linked only at i = 1 (instead of a large loop, for a sys-
tem with both extremities required to be in the coupled
state). This so-called bound-unbound (bu) model corre-
sponds more closely to the one studied usually in on-lattice
simulations [13–15,31], and it was also adopted in [29,30].
We notice that the factor µ2(N−ltot−ntot) cancels out when
looking at Z∗ = Z/µ2N .

In the present study, we are moreover implicitly adopt-
ing the value σ = 1 for the cooperativity factor, where
the parameter σ gives a measure for the barrier to over-
come for the initiation of a loop opening. In realistic
sequence-specific calculations [22,25–28], one uses typi-
cally σ = O(10−5). It is however not clear what choice
for σ is appropriate when cp = 2.15 since in experimen-
tal/theoretical comparisons an exponent cp ∼ 1.8 is gener-
ally taken and in a recent study [55] it was suggested that
the values for σ and cp should vary in parallel in order to
reproduce correctly experimental melting curves. We note
that small σ values could increase corrections to scaling,
whereas this parameter is not expected to influence the
thermodynamic properties.

Disordered PS models can be solved numerically by
writing down recursive equations for the partition function
with a SIMEX scheme [4,5,23,24], taking into account
efficiently the long-range entropic loop weights. A basic
idea in the recursive scheme is that the forward partition
function Zf

ε (ρ + 1), which accounts for all configurations
up to position ρ + 1 along the sequence with both base
pairs at positions i = 1 and i = ρ + 1 in the closed state
(s1 = sρ+1 = 1), can be obtained from Zf

ε (ρ):

Zf
ε (ρ + 1) = eβερ+1−log µ

·
⎡

⎣Zf
ε (ρ) +

ρ−1∑

ρ′=1

Zf
ε (ρ′)

[2(ρ − ρ′ + 1)]cp

⎤

⎦. (16)

We can similarly write down the equation for the backward
partition function:

Zb
ε (ρ − 1) = eβερ−1−log µ

·
⎡

⎣Zb
ε (ρ)+

N∑

ρ′=ρ+1

Zb
ε (ρ

′)
[2(ρ′ − ρ + 1)]cp

+1

⎤

⎦ (17)

with the last term in the equation above corresponding
to the free-end configuration (si = 0 for i > (ρ − 1)).
The canonical partition function for the complete chain of
length N is given by:

Z∗
N,ε =

N∑

ρ=1

Zf
ε (ρ) = Zb

ε (1), (18)

where the forward sum takes into account the free-ends.
With these calculations one obtains in particular the prob-
ability for a base pair at position i (along the sequence of
length N) to be in the closed state as:

Pε(i, T, N) = 〈si〉 =
Zf

ε (i)Zb
ε (i)

Z∗
N,εe

βεi−log µ
, (19)

where the division with eβεi−log µ is to rectify the double
counting of the corresponding factor (involved both in Zf

ε

and in Zb
ε ).

3.2 Measured observables

For a given disorder sequence {εi, i = 1, . . . , N}, at fixed
chain length N and temperature T , we can derive from the
Pε(i, T, N) = 〈si〉 (19) quantities of interest such as the
density of closed AT base pairs θAT,ε (respectively GC,
θGC,ε), the total density of closed base pairs θε and the
energy density eε:

θAT,ε(T, N) =
1
N

〈
∑

i∈AT

si

〉
=

1
N

∑

i∈AT

Pε(i, T, N) (20)

θGC,ε(T, N) =
1
N

〈
∑

i∈GC

si

〉
=

1
N

∑

i∈GC

Pε(i, T, N) (21)

θε(T, N) = θAT,ε(T, N) + θGC,ε(T, N) (22)
eε(T, N) = − [εAT θAT,ε(T, N) + εGCθGC,ε(T, N)] .

(23)

We can also consider the specific heat cε as well as the
derivative of the density of opened base pairs cθ,ε, which
is relevant to experimental determinations:

cε(T, N) =
1

T 2

deε(T, N)
dT

(24)

cθ,ε(T, N) = − 1
T 2

dθε(T, N)
dT

. (25)

Since R �= 1, the energy density eε and the order parame-
ter θε can exhibit different behaviors, and accordingly such
can be also the case for cε and cθ,ε. In the same direction
we consider also the susceptibility, obtained as:

χε(T, N) =
1
N

⎡

⎣
〈(

N∑

i=1

si

)2〉
−
〈(

N∑

i=1

si

)〉2
⎤

⎦

=
1
β

[
dθAT,ε(T, N)

dεAT
+

dθGC,ε(T, N)
dεGC

+
dθAT,ε(T, N)

dεGC
+

dθGC,ε(T, N)
dεAT

]
, (26)

providing interestingly a possibility for checking numerical
accuracy in the computations, from the fulfillment of the
equality dθAT,ε(T, N)/dεGC = dθGC,ε(T, N)/dεAT .
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We study moreover the behavior of the (non-
normalized) loop length probability distribution:

Pε(l, T, N) = N (l)
N−l−1∑

i=1

Zf
ε (i)Zb

ε (i + l + 1)
Z∗

N,ε

(27)

with N (l) = 1/(2l)cp , independent from the disorder se-
quence. Therefore we introduce the quantity:

P ∗
ε (l, T, N) = (2l)cpPε(l, T, N), (28)

noting that in the pure model P ∗(l, T, N) ∝ e−l/ξ(T,N)

(see (9)) and correspondingly P ∗(l, T, N) → const. for
T → T−

c .
As a first step in the analysis of such data, we will check

the validity of standard finite size scaling for quantities
averaged over disorder. With the usual definition of the
critical exponents and y = (T − Tc)N1/νr , one expects:

eε(T, N) ∼ N1/νr−1ẽ(y) (29)

cε(Tc, N) ∼ N2/νr−1c̃(y) (30)

θε(T, N) ∼ N−βr/νr θ̃(y) (31)

χε(T, N) ∼ Nγr/νr χ̃(y), (32)

where it is possible to find βr/νr �= 1 − 1/νr and γr/νr �=
2/νr − 1 = αr/νr. For the average loop length probability
distribution, we still look for a behavior at the critical
point described by a power law as in the pure case:

Pε(l, Tc, N) ∝ 1/lcr , (33)

and therefore
P ∗

ε (l, Tc, N) ∝ lcp−cr . (34)

Interestingly, based on this relation, it should be particu-
larly simple to seek numerical evidence for cr �= cp.

3.3 Computational details

We resort to the SIMEX scheme [5,23,24], based explicitly
on partition function evaluations, instead of recursions for
specific conditional probabilities as in [4]. Besides this con-
ceptual difference (important for generalizations, notably
to higher-order models), for the simple helix-coil model
in linear molecules, as considered here, the reduction of
the computational complexity by one order of magnitude
in the SIMEX method relies on the numerical representa-
tion of the long-range effects in the model as a sum of NS

exponentials, as already formulated in the FF method.
The other important ingredient in the FF, also imple-
mented straightforwardly in the SIMEX, corresponds to
a forward-backward scheme as described in Section 3.1,
classical in dynamic programming and associated with an
additional order of magnitude reduction in complexities.
For the linear case, the complexities for a complete prob-
ability map calculation reduce overall from N3 (for a one-
way progressive treatment) to NSN .

In order to make the scheme operational in practice,
it is necessary to obtain appropriate numerical represen-
tations for long-range effects as sums of exponentials. The
general numerical problem associated with the analysis of
multiexponential functions is notoriously a delicate one.
It covers two distinct — in principle — situations, con-
cerning either identifications or approximations, the rele-
vant case for the present study. In the identification sit-
uation, it is necessary to recover the correct number of
exponentials, and of course the correct associated param-
eters, from curves (usually experimental) supposed to be
of multiexponential type for theoretical reasons. A general
solution to this problem is provided by the Padé-Laplace
method [56], requiring no a priori hypotheses for the iden-
tification of components in sums of general exponentials
(real and/or complex). This formulation encompasses, and
generalizes, in a unified frame, a series of solutions since
Prony’s method and the so-called method of moments [57].
Even though originally formulated as an identification ap-
proach, the numerical application of the method of Padé-
Laplace to power-law functions (such as for loop-entropies
here) revealed an identification-like behavior in this ap-
proximation problem, in the sense that, for given maxi-
mal long-range lengths, a fixed number of significant ex-
ponential components are obtained. For example, for a
series of biologically-oriented studies, an approximation
of 1/l1.95 with NS = 14 exponentials was shown to be
appropriate (with further refinements of the parameters
with least-squares procedures) [25]. In the present study,
in order to be in strictly comparable conditions with this
respect, we adopt the numerical representation of 1/l2.15

with NS = 15 exponentials in [29].

For the numerical computation of the recursive equa-
tions for the forward and backward partition functions, it
is moreover necessary to avoid underflow/overflow prob-
lems. For this purpose different schemes can be imple-
mented [5,24], in order to normalize the numerators and
denominators the ratios of which are involved in the eval-
uation of probabilities (19). We consider here the nor-
malization described in [24], based on the introduction
of free energy like quantities for the handling of the loga-
rithms of Zf

ε and Zb
ε . The details of the implementations

are provided in the Appendix, along with the description
of boundary conditions.

We study extensively the case x = R/[logµ(R − 1)] =
1.3, using the same energies and connectivity constant as
in [31]: R = 2 and log µ � log µSAW � 1.54, in three di-
mensions. We consider sequence lengths ranging between
N = 100 and N = 20 000. For x = 1.3, such N -values
appear to be large enough both for the clarification of
the thermodynamic limit behavior and for the study of
corrections to scaling. On the other hand, the numerical
computations are reasonably fast up to this length, which
makes it possible to consider closely spaced temperatures
and to obtain correspondingly, with negligible numerical
errors, quantities related to derivatives, such as in particu-
lar the values of the maxima of the specific heat. In detail,
for given chain lengths, we consider NT = 250 different
T -values, equally spaced in intervals [Tmin(N), Tmax(N)]
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Table 1. Tabulation of the chain lengths N , the num-
ber of samples Ns(N) and the range of temperatures
[Tmin(N), Tmax(N)] in the numerical computations. For each
disordered sequence NT = 250 equally spaced temperatures,
in the corresponding intervals, are considered.

N Ns(N) Tmin(N) Tmax(N)
100 2000 0.95 1.2
200 2000 0.95 1.2
500 2000 1.0 1.16
750 1000 1.0 1.16
1000 1000 1.0 1.15
2500 1000 1.02 1.14
5000 1000 1.02 1.14
7500 1000 1.04 1.12

10 000 600 1.04 1.14
15 000 500 1.04 1.12
20 000 500 1.04 1.12

around the corresponding Tc(N), evaluated roughly from
the position of the maximum of the average specific heat in
some preliminary results. For the different chain lengths,
the number of samples Ns(N) as well as the Tmin(N) and
Tmax(N) temperatures are detailed in (Tab. 1).

It was checked in particular that with the various
choices above the errors on the maximum of specific heat
and of susceptibility were both consistently smaller than
fluctuations between samples. Without any loss of gener-
ality we set in all calculations εAT = 1, i.e. temperature is
in εAT unities. The evaluation of the susceptibility is ob-
tained by numerical derivations with respect to εAT and
εGC (see (26)), with δεAT = β×10−4 and δεGC = RδεAT ,
which ensures the desired numerical accuracy at all tem-
peratures. Finally, in all calculations the errors on average
quantities are computed from sample-to-sample fluctua-
tions.

4 Results and discussion

4.1 Given sample-sequence and different x values

We consider first the qualitative behavior of the model for
a given sample-sequence of length N = 10 000, with dif-
ferent x = R/[logµ(R − 1)] values. Results shown in this
section are obtained with a particular disorder configura-
tion. It was however checked that the corresponding qual-
itative observations are also valid with various arbitrarily
chosen sequences. In order to cover different significant
situations, the following values for the parameter x were
considered: x = 2, 1.3, 1.4, 0.7, respectively. Notably, the
choice x = 2 is for comparisons with the results in [29,30].
In detail, we used the same R = 1.098, and we set in addi-
tion log µ � 5.55, for obtaining close critical temperatures
in the pure case. The choice x = 1.3 is for compatibility
with the conditions in [31], and accordingly we set in this
case R = 2 and log µ � 1.54. On the other hand, the choice
of the close value x � 1.4 is following parameters setting
usual in comparisons with experimental results [22,25–27].
In this latter case, the value for x is not related to a large R
value, but rather to a large average log µ � 12.35 (in kB

unities). It can be noticed that typically used coupling en-
ergies lead to R � 1.062, as obtained by averaging over the
different stacking energies for neighbor base pairs εi,i+1.
Finally, for clarification of potential differences resulting
from choices of large R or alternatively large µ values,
x � 0.7 was retained as corresponding to the two choices
for (R, log µ) couples: R � 1.062, log µ � 24.5 (case a);
and R � 18.38, log µ � 1.54 (case b).

We plot in (Fig. 1) the susceptibilities χε(T, x, N) for
the sample-sequence for the different x values. We observe
that the results depend strongly on x. However, the shapes
of the curves obtained with x = 1.3 and x = 1.4 appear to
be strikingly similar. Moreover, also the two curves corre-
sponding to the two different cases associated with x = 0.7
(case a and case b) are qualitatively similar. The results
here are in agreement with the overall picture given in Sec-
tion 2.4, with indications for an x-dependent finite size
behavior. The extreme case considered there, with pure
AT and GC regions, is clearly a very rough approxima-
tion of a typical sequence. It is nevertheless clear that the
parameter x appears to capture some essential ingredients
of the model.

For more quantitative analysis, we note that for N →
∞ one expects a transition temperature close to T∞

c ∼
(Tc,AT + Tc,GC)/2 ∼ (R + 1)/(2 logµ). For a given finite
sequence, a pseudo-critical temperature Tc(ε, x, N) must
be adopted, as the critical temperature is not well defined.
Here we take as Tc(ε, x, N) the temperature associated
with the highest maximum value for susceptibility [52]. In
particular, with such a choice, we find that the behavior of
χε(T, x, N) displays some scaling when plotted as function
of [T − Tc(ε, x, N)]Tc(ε, x, N)/(R− 1), for different R and
x values. We present in (Fig. 2) correspondingly scaled
χε data (also multiplied by the factor R/[x2(R + 1)], for
obtaining close behaviors in the high temperature phase).

This figure further makes evident the dependence on
x for finite size systems. The results suggest that, at fixed
length scale N , for large x, and in particular here already
for the value x = 2, the system exhibits typically only
one very sharp peak. This observation should be related
to the fact that the probability of large enough rare re-
gions is negligible (though one could still encounter such
a case when considering a large number of sequences),
and the system behaves essentially as a pure model with
ε = (εAT + εGC)/2 = (R + 1)/2. For smaller x val-
ues, we observe on the contrary an increasing number of
peaks, with decreased sharpness. This finding is coher-
ent with the qualitative picture following which, with in-
creasingly smaller x values, rare regions with increasingly
smaller lengths L are sufficient in order to observe multi-
step behaviors, since the relevant quantity should be the
ratio L/x. Nevertheless, for the smallest considered value
x = 0.7, obtained with two different parameters choices,
we observe the same number (four) of peaks, but the posi-
tion with respect to the other peaks for the absolute max-
imum of the curve is shifted for x = 0.7 a as compared
to the corresponding one for x = 0.7 b and the larger x
values. This confirms that the introduced x describes the
finite size behavior only approximately.
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Fig. 1. Susceptibility curves for a given sample-sequence of length N = 10 000 and different x values (see text).
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Fig. 2. Scaled susceptibility for a given sample-sequence of
length N = 10 000 and different x values. χεR/[x2(R + 1)]
data are plotted as function of [T − Tc(ε, x, N)] log µ/(R − 1),
with Tc(ε, x, N) the temperature associated with the absolute
maximum of susceptibility. In the case a with the value x = 0.7
specific choice was needed for defining the pseudo-Tc, and we
looked in this case to correspondence of positions of the peaks
with the other curves, by taking it as the temperature of the
second maximum.

The changes in the behavior of a typical sample, as de-
scribed above, are also expected at larger sequence sizes
for a given x-value, since this parameter appears to be-
have as (the logarithm of) an intrinsic length scale of the
system. Some numerical evidence in this direction was al-
ready given in [31] for the on-lattice DSAW-DNA, where
the qualitative analysis of the specific heat suggested the
appearance of multi-peaked curves only for large enough
N -values, and an increasing number of peaks in typical
sequences as function of N . Here we obtain the same qual-
itative results for the value x = 1.3 studied in detail. Nev-
ertheless, detailed quantitative bases for such conclusions
are left for future work, with an extensive study of the
finite size effects for different x values.

It is to be emphasized that in the suggested picture it
is the behavior of the typical finite size sample which is ex-
pected to change when varying x, and therefore one would
not expect different typical and average correlation lengths
in the thermodynamic limit, though the sizes necessary for
confirming this hypothesis could be out of reach for large
x values. An analysis in terms of pseudo-critical temper-
atures is clearly necessary to distinguish between this sit-
uation and the alternative one proposed in [29,30,38,39],
which is left to a forthcoming work [40].
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plotted as functions of temperature.

4.2 Behavior of average quantities

In what follows, we investigate the behavior of average
quantities for x = 1.3 (obtained by setting R = 2 and
log µ = 1.54). The average energy density eε(T, N) and
the average closed base pair density θε(T, N), for different
chain lengths, are represented in (Fig. 3). It is clear that
the system undergoes a phase transition in the thermody-
namic limit, with the energy density and the order param-
eter going from zero at high temperature to finite values
below Tc. We can moreover observe from (Fig. 3) very
similar behaviors for the two quantities (apart from the
sign difference) and we expect to find, as a consequence,
βr = νr − 1 and γr = αr = 2 − νr. We have also checked
that the average densities of closed AT θAT,ε(T, N) and
GC θGC,ε(T, N) base pairs exhibit qualitatively similar
behaviors.

Nevertheless, the data do not agree with the corre-
sponding expected scaling laws (see (29) and (31)), mak-
ing clear the presence of strong corrections to the asymp-
totic behavior. Even though it is therefore difficult to eval-
uate the critical exponents, the fact that the curves do
not cross at the same point (as particularly evident for
the largest sizes) suggests a transition with (an average)
νr > 1(=νp). More in detail, the energy density and the or-
der parameter appear to converge both towards functions
which are continuously vanishing at the critical point and
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possibly also differentiable, which would imply a transi-
tion at least of second order.

Still better evidence for a smooth transition comes
from the average specific heat cε(T, N) data, plotted in
(Fig. 4). One can notice from this figure that the max-
imum appears to diverge with the chain length for the
smallest sizes, but saturates for larger N -values, as ex-
pected for a critical point characterized by αr ≤ 0, i.e.
νr ≥ 2/d (=2). Interestingly, the qualitative behavior for
chain lengths smaller than ∼1000 appears to be similar
to the one found in [31]. This observation suggests that
the on-lattice DSAW-DNA and the off-lattice disordered
PS model considered could exhibit the same kind of fi-
nite size effects, also supporting the hypothesis that the
value νr ∼ 1.2 obtained from the Monte Carlo like numer-
ical simulations represents a lower bound for the average
correlation length critical exponent.

We find a very similar behavior for the susceptibility
χε(T, N), represented in (Fig. 5), as well as for the deriva-
tive with respect to the temperature of the total density
of closed base pairs cθ,ε(T, N) (not shown). These find-
ings further suggest that these quantities, as well as the
energy and the order parameter, are described also in the
disordered case by the same critical exponents. Again, it
is difficult to evaluate the exponents by applying standard
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finite size scaling analysis to the data, because of the ob-
vious presence of strong corrections to the expected laws
(here (30) and (32)).

Finally, (Fig. 6) displays data for P ∗
ε (l, Tc(N), N) (see

(28)) at the size-dependent critical temperatures Tc(N),
identified here with the temperatures associated with the
maximum of the average specific heat. We note also in this
case a strongly N -dependent behavior. In particular, the
considered quantity is nearly constant in the range 1 �
l � N for the smallest sizes, whereas for the largest ones,
expected to be the most meaningful, it is increasing with
l rather linearly (on logarithmic scale) on a wide ranged
interval, which should mean that the expected power law
representation (33) is valid, but with cr � cp.

We notice that the observed strong N -dependence
of averaged quantities and the fact that data do not
obey usual scaling laws on the whole N -range studied is
in agreement with the qualitative picture given in Sec-
tion 2.3, clearly suggesting that, at fixed x, the effect
of disorder becomes evident, and the system reaches the
asymptotic behavior, only for large enough size values.
From this point of view, in particular the saturation of
the specific heat and susceptibility maxima can be related
to the appearance of a larger number of less sharp peaks
(apparently in the typical sequences) for increasing N , in
analogy with the behavior discussed in the previous sec-
tion when decreasing x at fixed chain length.

4.3 Critical exponents and corrections to scaling

We consider in terms of quantitative analysis data for the
maximum of the average specific heat (Fig. 7a) and the
maximum of the average susceptibility (Fig. 7b), as func-
tions of chain lengths N . Using the law cε(T, N)

max ∝
Nαr/νr , which is a particular case of (30), we obtain from
the analysis of these data αr > 0 and correspondingly
νr < 2 when considering only the smallest chain lengths.
In detail, the exponent would be still compatible with the

value νr = νp = 1 characterizing a first order transition,
for N ≤ 1000. For both cε(T, N)

max
and χε(T, N)

max

the asymptotic saturation becomes obvious only for sizes
larger than N ∼ 5000. Following [52], we consider a fit
of the data to the form g1 − g2N

e, with g1, g2 > 0 and
where the exponent is ec = αr/νr for the specific heat
and eχ = γr/νr for the susceptibility. Using the whole
data sets in the fits, negative exponents, compatible with
zero within the errors, are obtained in both cases. On the
other hand, with corrections to scaling, strictly negative
exponents are obtained. Letting aside the two smallest
sizes (N = 100 and N = 200), the best fit in the case
of cε(T, N)

max
corresponds to ec = αr/νr = −0.3 ± 0.1,

and we get a compatible value for eχ = γr/νr from
χ(T, N)

max
. This result confirms that αr = γr and, from

the hyperscaling relation, it implies νr ∼ 3. Intriguingly,
the correlation length exponent value is close to the one
obtained for the disordered PS model with cp = 1.75 con-
sidered in [30]. We notice that limiting the analysis to
N > 500 we obtain a still larger νr, but the statistics in
our study do not allow more accurate evaluations. Never-
theless, the important point is that, when looking at aver-
age quantities, it clearly appears that the transition is at
least of second order and, at the same time, the crossover
between a pure system like behavior for small sizes and the
(apparent) asymptotic one is quantitatively confirmed.

For further validation of this result, and for a better
understanding of finite size corrections to scaling, we con-
sider the fits of P ∗

ε (l, Tc(N), N) to the expected behavior
∝lcp−cr (34). We get correspondingly the size-dependent
estimations of the critical exponent cr(N), which are pre-
sented in (Fig. 8). Here the (finite size) critical tempera-
tures Tc(N) are taken as the temperatures for which the
average specific heat reaches its maximum and we disre-
gard the possible presence of a finite correlation length.
We fit data by considering only the l-range (with l > 2)
in which P ∗

ε (l, Tc(N), N) is an increasing function of l
(see Fig. 6). The obtained values of cr(N), and there-
fore of 1/νr(N) = min{1, cr(N) − 1}, for different chain
lengths are definitely not compatible within the (though
indicative) errors and one observes a clear trend towards
decreasing cr(N) values for larger chain lengths. It is in
particular interesting to notice that, for N = 200, we still
have cr(N) � 2.1 and correspondingly νr(N) = 1, whereas
for N ∼ 1000, we obtain cr(N) ∼ 1.8 ÷ 1.9, again in per-
fect agreement with the results of [31] concerning the 3d
DSAW-DNA on-lattice model. On the other hand, with
the study of larger chain lengths it becomes clear that
the transition is at least of second order with νr ≥ 2.
In fact, for the largest size considered N = 20 000, the
exponent obtained is cr(N) � 1.5. This implies that the
correct evaluation of the (asymptotic) critical exponents,
apart from finite size corrections, as cr = limN→∞ cr(N)
leads to cr ≤ 1.5. This value can be compatible with
cr = 1 + 1/νr ∼ 1.35 obtained from the maximum of
the specific heat.

It is nevertheless important to stress that the above
results concern average quantities. The thermodynamic
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limit behavior of the typical sample could be therefore
blurred by the fluctuations of the sequence dependent
pseudo-critical temperature, if they are governed by an
exponent νr,2 > νr,1 as suggested in [29,30,38,39]. It is
possible that we are only looking at the average correla-
tion length ξ2(T, N), and in particular the value cr = 1.5
would be in agreement with the result νr,2 = 2 in [30].

Accordingly, we consider also data evaluated by aver-
aging over disorder after taking the logarithm, i.e. we look
at log P ∗

ε (l, Tc(N), N). To be precise, following [30], the
quantity expected to be described by the typical correla-
tion length ξ1 is

∑
i log{[Zf

ε (i, N)Zb
ε (i+l, N)]/Z∗

ε,N}. Here
we are instead considering a kind of mixed average, but
the behavior of log P ∗

ε (l, Tc(N), N) should anyway display
differences with that of log P ∗(l, T, N) in the presence of
two distinguishable correlation lengths. On the contrary,
the comparison between Figures 9 and 6 shows that, at
least for T = Tc(N), log Pε and log Pε behave similarly. In
particular, log P ∗

ε is also an increasing function of l for the
largest considered sizes, and on quantitative grounds the
evaluated cr(N) values are essentially compatible within
errors. In order to emphasize this point, the expected
asymptotic behavior log P ∗

ε ∼ (2.15 − cr) log l + b with
cr = 1 + 1/νr ∼ 1.35 (obtained from the average specific
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heat) is also plotted in Figure 9. More quantitative anal-
ysis of these results are left for a forthcoming work [40].

5 Conclusions

We studied numerically a disordered PS model for DNA
denaturation with cp = 2.15, which displays a first order
transition in the homogeneous case, by solving recursively
the equations for the canonical partition function with the
SIMEX scheme. The model is made as similar as possible
to the 3d DSAW-DNA previously studied by Monte Carlo
like simulations [31] and it is expected that the results of
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the study could also be relevant to different disordered PS
models with cp > 2.

We introduced the parameter x = R/[log µ(R −
1)], where R = εGC/εAT is the ratio of the Guanine-
Cytosine to the Adenine-Thymine coupling energies and
µ is the connectivity constant of the corresponding on-
lattice model. We showed that this parameter, at fixed
cp value and GC composition (taken to be 1/2), appears
to play the role of (the logarithm of) an intrinsic length
scale, and to describe, in a first approximation, the fi-
nite size behavior. In particular, for a given N -value, the
manifestation of the effect of disorder appears to be the
most evident for the smallest x values, in agreement with
a qualitative explanation based on the possible occurrence
of large enough rare regions. It is interesting to notice that,
within this picture, the system size necessary for observ-
ing the asymptotic behavior and making evident the effect
of disorder diverges exponentially with x.

We studied in detail the value x = 1.3, obtained with
R = 2 and log µ = 1.54 (as in [31]), for sequence sizes up
to N = 20 000 (larger than the sizes accessible to Monte
Carlo like simulations by a factor 20). We found that the
model exhibits strong corrections to scaling, displaying
a crossing between a still nearly pure system like behav-
ior for small chain lengths N � 1000 and the observed
(apparently asymptotic) large one for N � 5000. In par-
ticular, the maximum of the average specific heat, which
behaves as the susceptibility, increases with N for small
chain lengths. Considering the whole size range, it ap-
pears instead to be clearly saturating. This result shows
that, at least from the point of view of average quantities,
the thermodynamic limit is described by a random fixed
point with αr ≤ 0 and correspondingly νr ≥ 2/d = 2. By
fitting data with a scaling law of the form g1 − g2N

αr/νr ,
and by taking into account corrections to scaling, we find
in particular αr/νr = −0.3 ± 0.1, which by using the hy-
perscaling relation gives νr ∼ 3.

The average loop length probability distribution at the
critical temperature appears still described by a power
law at least on an interval 1 � l � N of the range.
Upon fitting data according to Pε(l, Tc(N), N) ∝ 1/lcr

one finds N -dependent values for the exponent which is
compatible with cp for the smallest sizes whereas when
looking at the whole N range it appear to converge to-
wards an asymptotic limit cr ≤ 1.5 (possibly compatible
with cr = 1 + 1/νr ∼ 1.35). Moreover, log P (l, Tc(N), N)
exhibits also a similar behavior, suggesting that there is no
difference between typical and average correlation lengths.

Our best-fit estimation, νr ∼ 3, is close to the estima-
tion in [30] for the case cp = 1.75. This observation would
support the hypothesis that disorder is relevant as soon
as cp > 3/2 and that the various disordered PS models
considered could be described by the same random fixed
point corresponding to a transition which is at least of
second order (and probably smoother), in agreement with
recent analytical findings [32–34]. Our statistics do not
allow nevertheless to completely rule out the possibility
that νr = 2, particularly from Pε data, and in any event
an analysis in terms of pseudo-critical temperatures [52,

29,30,54,38,39] is in order for clarifying the situation. We
leave this development to a forthcoming work [40].

It is also interesting to mention very recent theoret-
ical studies [58–61] on the loop dynamics in PS models,
which in particular relate the equilibrium loop length dis-
tribution probability to the correlation function, therefore
suggesting a new intriguing method for measuring experi-
mentally the c value. From this point of view, the expected
behavior of P (l) in presence of disorder and the possibil-
ity of observing differences between the average and the
typical sequence cases seem to us important questions to
be clarified.

In conclusion, our results provide numerical evidence
for strong finite size corrections to the asymptotic behav-
ior of the disordered PS model considered. The data show
moreover that disorder is relevant, at least from the anal-
ysis of average quantities. The findings here appear also to
confirm that the evaluation νr � 1.2 in previous numerical
study concerning on-lattice 3d DSAW-DNA model [31] is
to be considered as lower bound for the correct (average)
correlation length exponent. The observed behavior is in
agreement with a proposed qualitative picture for finite
size effects, which could also explain the difference with
the results of previous studies on a different disordered
PS model with the same cp [29,30]. A preliminary presen-
tation for part of the findings and hypotheses here can be
found in [62].
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during B.C. post-doctoral stage at the Institut Pasteur, and
we thank Michael Nilges and Geneviève Milon for continuous
support.

Appendix

We use in the numerical computations the SIMEX imple-
mentation of the FF scheme [4,5,23], which relies on the
numerical approximation of the powers 1/lcp by sums of
exponentials:

1
(2l)cp

�
NS∑

k=1

ake−2lbk . (35)

In the present study we consider cp = 2.15 and the val-
ues for the coefficients ak and bk, with NS = 15, provided
in [29]. The computation of the recursive equations for
the forward and backward partition functions were imple-
mented with the introduction of free energy like quanti-
ties, in order to handle logarithms of Zf

ε and Zb
ε (follow-

ing [24]).
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In detail, equation (16) for the forward partition func-
tion becomes:

Zf
ε (ρ + 1) = eβερ+1−log µ

·
⎧
⎨

⎩Zf
ε (ρ)+

NF F∑

k=1

ak

ρ−1∑

ρ′=1

Zf
ε (ρ′)e−2(ρ−ρ′+1)bk

⎫
⎬

⎭ .

(36)

By defining

Qk(ρ) =
ρ∑

ρ′=1

Zf
ε (ρ′)e2ρ′bk = e2ρbk+µk(ρ), (37)

one obtains

Zf
ε (ρ) = eµk(ρ) − eµk(ρ−1)−2bk (38)

and a recursion relation for µk(ρ):

µk(ρ + 1) = µk(ρ) + log(Af + Bf + Cf ) (39)

Af = e−2bk

Bf = eβερ+1−log µ
{
1 − e−2bk+µk(ρ−1)−µk(ρ)

}

Cf = eβερ+1−log µ

⎧
⎨

⎩

NF F∑

j=1

aje
−4bj+µj(ρ−1)−µk(ρ)

⎫
⎬

⎭.

Analogously, one writes the equation for the backward
partition function:

Zb
ε (ρ − 1) = eβερ−1−log µ

{
Zb

ε (ρ)

+
NFF∑

k=1

ak

N∑

ρ′=ρ+1

Zb
ε (ρ

′)e−2(ρ′−ρ+1)bk + 1

⎫
⎬

⎭

(40)

and defines

Rk(ρ) =
N∑

ρ′=ρ

Zb
ε (ρ

′)e−2ρ′bk = e−2ρbk+νk(ρ), (41)

obtaining

νk(ρ − 1) = νk(ρ) + log(Ab + Bb + Cb + Db) (42)

Ab = e−2bk

Bb = eβερ−1−log µ
{
1 − e−2bk+νk(ρ+1)−νk(ρ)

}

Cb = eβερ−1−log µ

⎧
⎨

⎩

NF F∑

j=1

aje
−4bj+νj(ρ+1)−νk(ρ)

⎫
⎬

⎭

Db = eβερ−1−log µe−νk(ρ).

We used the boundary conditions (with the implicit as-
sumption Zf

ε (0) = Zb
ε (N + 1) = 0):

Zf
ε (1) = eβε1−log µ

Zf
ε (2) = eβε1−log µeβε2−log µ

Zb
ε (N − 1) = eβεN−1−log µ[eβεN−log µ + 1]

Zb
ε (N) = eβεN−log µ, (43)

and correspondingly:

µk(1) = βε1 − log µ

µk(2) = βε1 − log µ + log[e−2bk + eβε2−log µ]

νk(N − 1) = βεN − log µ + log
{
e−2bk

+ eβεN−1−log µ[1 + e−βεN+log µ]
}

νk(N) = βεN − log µ. (44)
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