Skip to main content
Log in

Quantum Brownian motion and the second law of thermodynamics

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2007

Abstract.

We consider a single harmonic oscillator coupled to a bath at zero temperature. As is well-known, the oscillator then has a higher average energy than that given by its ground state. Here we show analytically that for a damping model with arbitrarily discrete distribution of bath modes and damping models with continuous distributions of bath modes with cut-off frequencies, this excess energy is less than the work needed to couple the system to the bath, therefore, the quantum second law is not violated. On the other hand, the second law may be violated for bath modes without cut-off frequencies, which are, however, physically unrealistic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.B. Callen, Thermodynamics and an introduction to thermostatics, 2nd edn. (John Wiley, 1985)

  • V. Špička, Th.M. Nieuwenhuizen, P.D. Keefe, Physica E 29, 1 (2005), and references therein; Quantum limits to the second law, edited by D.P. Sheehan, AIP Conference Proceedings, No. 643, 2002; see also http://www.ipmt-hpm.ac.ru/SecondLaw/, Quantum limits to the second law of thermodynamics, Open Internet Conference and Information Center

    Article  ADS  Google Scholar 

  • M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, Science 304, 74 (2004)

    Article  ADS  Google Scholar 

  • A.A.Clerk, Phys. Rev. B 70, 245306 (2004)

    Article  ADS  Google Scholar 

  • A. MacKinnon, A.D. Armour, Physica E 18, 235 (2003)

    Article  ADS  Google Scholar 

  • P. Hänggi, G.-L. Ingold, Chaos 15, 026105 (2005)

    Article  MathSciNet  Google Scholar 

  • J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics (Springer, Berlin, 2004)

  • X.L. Li, G.W. Ford, R.F. O'Connell, Phys. Rev. E 51, 5169 (1995); K.E. Nagaev, M. Büttiker, Europhys. Lett. 58, 475 (2002)

    Article  ADS  Google Scholar 

  • G.W. Ford, R.F. O'Connell, Physica E 29, 82 (2005)

    Article  ADS  Google Scholar 

  • P. Hänggi, G.-L. Ingold, Acta Physica Polonica B 37, 1537 (2006)

    Google Scholar 

  • G.W. Ford, R.F. O'Connell, Phys. Rev. Lett. 96, 020402 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • G.-L. Ingold, Dissipative quantum systems in Quantum transport and dissipation (Wiley-VCH, 1998), pp. 213–248

  • Following, e.g., references HAE05, HAE06, ING98, and LEV88, we adopt the Laplace transforms for an analysis of the frequency domain in this paper, instead of the Fourier transforms which have been employed in a series of papers by Ford and O'Connell, e.g., references FOR05, FOR06, and FOR85. Clearly, both are a priori equally acceptable to give rise to the same desired physical results in the end

  • G.E. Roberts, H. Kaufman, Table of Laplace Transforms (W.B. Saunders, Philadelphia, 1966)

  • A.M. Levine, M. Shapiro, E. Pollak, J. Chem. Phys. 88, 1959 (1988)

    Article  ADS  Google Scholar 

  • G.W. Ford, J.T. Lewis, R.F. O'Connell, J. Stat. Phys. 53, 439 (1988)

    Article  Google Scholar 

  • U. Weiss, Quantum dissipative systems 2nd edn. (World Scientific, Singapore, 1999)

  • M. Büttiker, A.N. Jordan, Physica E 29, 272 (2005)

    Article  ADS  Google Scholar 

  • J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  Google Scholar 

  • N.G. van Kampen, J. Stat. Phys. 115, 1057 (2004)

    Article  Google Scholar 

  • G. Alber, T. Beth, M. Horodecki et al., Quantum Information: An introduction to basic theoretical concepts and experiments (Springer, Berlin, 2001)

  • G.W. Ford, J.T. Lewis, R.F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Meixner, in Statistical mechanics of equilibrium and non-equilibrium, edited by J. Meixner (North-Holland, Amsterdam, 1965), pp. 52–68

  • M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1974)

  • I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 6th edn. (Academic Press, San Diego, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ILki Kim.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1140/epjb/e2007-00119-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, I., Mahler, G. Quantum Brownian motion and the second law of thermodynamics. Eur. Phys. J. B 54, 405–414 (2006). https://doi.org/10.1140/epjb/e2007-00013-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2007-00013-y

PACS.

Navigation