Skip to main content
Log in

f current fluctuations in organic semiconductors: evidence for percolation

  • Condensed Matter
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The f sloped current noise power spectra, observed in organic semiconductors, have been interpreted within a variable range hopping mechanism of the fluctuations. The relative current noise power spectral density \({\cal S}(f)=S_I(f)/I^2\) exhibits a maximum at the trap-filling transition between the ohmic and the space-charge-limited-current regime [Phys. Rev. Lett. 95, 236601 (2005)]. Here, we discuss the electronic conditions determining the crossover from ohmic to space-charge-limited transport. These arguments shed light on the need to adopt a percolative fluctuation picture to account for the competition between insulating and conductive phases coexisting at the transition, where small changes in the external bias lead to dramatic effects in the fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Sh. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge University Press, Cambridge, 1996), pp. 190–202

  • E. Dagotto, Science 309, 257 (2005); K. Elteto, E.G. Antonyan, T.T. Nguyen, H.M. Jaeger, Phys. Rev. B 71, 064206 (2005); J. Burgy, E. Dagotto, M. Mayr, Phys. Rev. B 67, 014410 (2003); C. Reichhardt, C.J. Olson Reichhardt, Phys. Rev. Lett. 90, 046802 (2003); S. Sachdev, Science 288, 475 (2000); A.A. Middleton, N.S. Wingreen, Phys. Rev. Lett. 71, 3198 (1993)

    Article  ADS  Google Scholar 

  • B.I. Shklovskii, Phys. Rev. B 67, 045201 (2003); A.L. Burin, B.I. Shklovskii http://arxiv.org/abs/cond-mat/0512348

    Article  ADS  Google Scholar 

  • A. Carbone, P. Mazzetti, Phys. Rev. B 57, 2454 (1998)

    Article  ADS  Google Scholar 

  • A. Carbone, P. Mazzetti, F. Rossi, Appl. Phys. Lett. 78, 2518 (2001)

    Article  ADS  Google Scholar 

  • A. Carbone, B.K. Kotowska, D. Kotowski, Phys. Rev. Lett. 95, 236601 (2005) http://arxiv.org/abs/cond-mat/0505533

    Article  ADS  Google Scholar 

  • C. Pennetta, G. Trefan, L. Reggiani, Phys. Rev. Lett. 85, 5238 (2000)

    Article  ADS  Google Scholar 

  • U.N. Nandi, C.D. Mukherjee, K.K. Bardhan, Phys. Rev. B 54, 12903 (1996)

    Article  ADS  Google Scholar 

  • C. Chiteme, D.S. McLachlan, I. Balberg, Phys. Rev. B 67, 024207 (2003); D. Toker, D. Azulay, N. Shimoni, I. Balberg, O. Millo, Phys. Rev. B 68, 041403 (2003)

    Article  ADS  Google Scholar 

  • J. Planes, A. Francois, Phys. Rev. B 70, 184203 (2004)

    Article  ADS  Google Scholar 

  • Y.P. Li, T. Sayoto, L.W. Engel, D.C. Tsui, M. Shayegan, Phys. Rev. Lett. 67, 1630 (1991)

    Article  ADS  Google Scholar 

  • A.C. Marley, M.J. Higgins, S. Bhattacharya, Phys. Rev. Lett. 74, 3029 (1995)

    Article  ADS  Google Scholar 

  • B. Raquet, A. Anane, S. Wirth, P. Xiong, S. Molnar, Phys. Rev. Lett. 84, 4485 (2000)

    Article  ADS  Google Scholar 

  • M.A. Lampert, P. Mark, Current Injection in Solids (Academic Press, New York, 1970)

  • P.E. Parris, V.M. Kenkre, D.H. Dunlap, Phys. Rev. Lett. 87, 126601 (2001)

    Article  ADS  Google Scholar 

  • I.I. Fishchuk, A. Kadashchuk, H. Bassler, S. Nespurek, Phys. Rev. B 67, 224303 (2003)

    Article  ADS  Google Scholar 

  • R.W.I. De Boer, M.E. Gershenson, A.F. Morpurgo, V. Podzorov, J. Appl. Phys. 95, 1196 (2004)

    Article  ADS  Google Scholar 

  • Y.S. Yang, S.H. Kim, J.I. Lee, H.Y. Chu, L.M. Do, H. Lee, J. Oh, T. Zyung, M.K. Ryu, M.S. Jang, Appl. Phys. Lett. 80, 1595 (2002)

    Article  ADS  Google Scholar 

  • D. Knipp, R.A. Street, A.R. Völkel, Appl. Phys. Lett. 82, 3907 (2003)

    Article  ADS  Google Scholar 

  • D.V. Lang, X. Chi, T. Siegrist, A.M. Sergent, A.P. Ramirez, Phys. Rev. Lett. 93, 076601 (2004)

    Article  ADS  Google Scholar 

  • E.K. Muller, J.A. Marohn, Adv. Mat. 17, 1410 (2005)

    Article  Google Scholar 

  • J.H. Kang, D. da Silva Filho, J.L. Bredas, X.-Y. Zhu Appl. Phys. Lett. 86, 152115 (2005)

    Article  Google Scholar 

  • V.D. Mihailetchi, J. Wildeman, P.W.M. Blom, Phys. Rev. Lett. 94, 126602 (2005)

    Article  ADS  Google Scholar 

  • A. Rokhlenko, J.L. Lebowitz, Phys. Rev. Lett. 91, 085002 (2003)

    Article  ADS  Google Scholar 

  • H.E. Stanley, J. Phys. A 10, L211 (1977); A. Coniglio, J. Phys. A 45, 3829 (1982)

    Google Scholar 

  • I. Balberg, Phys. Rev. B 57, 13351 (1998)

    Article  ADS  Google Scholar 

  • R. Rammal, C. Tannous, P. Breton, A.M.S. Tremblay, Phys. Rev. Lett. 54, 1718 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • R.R. Tremblay, G. Albinet, A.M.S. Tremblay, Phys. Rev. B 43, R11546 (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carbone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbone, A., Kotowska, B. & Kotowski, D. f current fluctuations in organic semiconductors: evidence for percolation . Eur. Phys. J. B 50, 77–81 (2006). https://doi.org/10.1140/epjb/e2006-00146-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00146-5

PACS.

Navigation