Skip to main content
Log in

The conductivity properties of protons in ice and mechanism of magnetization of liquid water

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

From a study of electrical conductivity of protons in the hydrogen-bonded chains in ice we confirm that the magnetization of liquid water is caused by proton transfer in closed hydrogen-bonded chains occurring as a first order phase transition, through which the ice becomes liquid water. We first study the conductive properties of proton transfer along molecular chains in ice crystals in our model. Ice is a typical hydrogen-bonded molecular system, in which the interaction of localized fluctuation of hydrogen ions (H+) with deformation of a structure of hydroxyl group (OH) results in soliton motion of the protons along the molecular chains via ionic and bonded defects. We explain further the quantum conductive properties of proton transfer and determine its mobility and conductivity under constant electric-field using a new theory of proton transfer, which agree with experimental values. From features of first order phase-transition for ice, and some experimental data of pure and magnetized water we confirm further that there are not only free water molecules, but also many linear and closed hydrogen-bonded chains consisting of many polarized water-molecules in the liquid water. Thus a ring proton-current, which resembles to a “molecular current” or a “small magnet” in solids, can occur in the closed hydrogen-bond chains under action of an externally applied magnetic field. Then the water molecules in the closed chains can be orderly arrayed due to the magnetic interaction among these ring proton currents and the externally applied magnetic field. This is just the magnetized effect of the water. In such a case the optical and electronic properties of the water, including the dielectric constant, magnetoconductivity, refraction index, Raman and Infrared absorption spectra, are changed. We determine experimentally the properties of the magnetized water which agree with the theoretical results of our model. However, the magnetized effect of water is, in general, very small, and vanishes at temperatures above 100 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Xie WenHui, magnetized water and its application (Science Press, Beijing, 1983)

  • K.M. Joshi, P.V. Kamat, J. Indian Chem. Soc. 43, 620 (1965)

    Google Scholar 

  • K. Higashitani, J. Colloid Interface Sci. 152, 125 (1992); J. Colloid Interface Sci. 156, 90 (1993)

    Article  Google Scholar 

  • B.N. Ke LaXin, magnetization of water (Beijing, Measurement Press, 1982)

  • Zhou Runliang, Zhan Shuxuan, Yuan Liuying, Li Biyu, Chen Shigeng, J. Nature Sin. 8, 318 (1984)

    Google Scholar 

  • Li Benyuan, Physics Sin. 5, 240 (1976)

    Google Scholar 

  • Jiang Yijian, Jia Qingjiou, Zhang PengCheng, Xu Lu, J. Light Scattering 4, 102 (1992)

    Google Scholar 

  • Pan Zhongcheng, Xun Chengxian, J. Chin. Med. Phys. 7, 226 (1985)

    Google Scholar 

  • Song Dongning, J. App. Math. Mech. 18, 113 (1997); Cao Changliang, Physics Sin. 22, 361 (1993)

    Article  Google Scholar 

  • K. Muller, Z. Chem. 10, 216 (1970); J. Liemeza, Z. Phys. Chem. 99, 33 (1976)

    Google Scholar 

  • P.V. Hobbs, Ice Physics (Oxford, Clarendon Press, 1974); J.J. Derlin, Int. Rev. Phys. Chem. 9, 29 (1990); L. Onlager, Science 166, 1359 (1969)

    Article  Google Scholar 

  • R. Podeszwa, V. Buch, Phys. Rev. Lett. 83, 4570 (1999); V. Buch, P. Sandler, J. Sadlej, J. Phys. Chem. B 102, 8641 (1998); H. Witek, B. Buch, J. Chem. Phys. 110, 3168 (1999); S. Kawajima, A. Warshel, J. Phys. Chem. 94, 460 (1990)

    Article  ADS  Google Scholar 

  • H. Engelheart, B. Bullemer, N. Riehl, in Physics of ice, edited by N. Riehl B. Bullemer, H. Engelheart (Plemun, New York, 1969)

  • E. Whaley, S.J. Jones, L.W. Grold, Physics and Chemistry of ice, Ottawa, RSC, Royal Society of Canada, (1973)

  • H. Bluhm, D.F. Ogletree, C.S. Fadley, Z. Hussian, M. Salmeron, J. Phys.: Condens. Matter 14, L227 (2002)

  • M.Z. Hubmann, Physica B 32, 127 and 141 (1974); C. Jaccard, Helv. Phys. Acta, 32, 89 (1959); K. Koga, H. Tapaka, J. Chem. Phys. 104, 263 (1996)

    Google Scholar 

  • V.H. Schmidt, J.E. Drumeheller, F.L. Howell, Phys. Rev. B 4, 4582 (1971); A. Kawada, A.R. McGhie, M.M. Labes, J. Chem. Phys. 52, 3121 (1970); G. Zundel, Hydration and Intermolecular Interaction (Mir. Moscow, 1972), p. 1; The Hydrogen Bond, Recent Developments in Theory and Experiments, edited by P. Schuster, G. Zundel, C. Sandorfy (North Holland, Amsterdam, 1976)

    Article  ADS  Google Scholar 

  • W.C. Homilton, J.A. Ibers, Hydrogen bonding in Solids, (Benjamin, New York, 1969); R.P. Bell, The proton in chemistry, (Chapman and Hall, London, 1973); G. Pimentel, A. McClellan, The hydrogen bond (Freeman. San Francisco, 1960)

  • M. Eigen, L. de Maeyer, H.C. Spatz, Physics of ice crystals (Coll. London, 1962)

  • A.S. Davydov, Biology and quantum mechanics (New York, Pergamon, 1982)

  • E. Whalley, S.J. Jones, L.W. Grold, Physics and chemistry of ice (Ottawa, RSC, 1973); J.H. Weiner, A. Asker, Nature 226, 842 (1970); R.J. Nelmes, Ferroelectrics 24, 237 (1980); H. Granicher, Phys. Kond. Materiel, 1, (1963)

    Article  ADS  Google Scholar 

  • L. Pauling, The nature of chemical bond (Cornell University, Ithaca, 1960); T. Bontis, Proton transfers in hydrogen bonded systems (Plenum Press, London, 1992)

  • V.Ya. Antonchenko, A.S. Davydov, A.V. Zolotaryuk, Phys. Stat. Sol. (b) 115, 631 (1983)

    Article  MathSciNet  Google Scholar 

  • A.V. Zolotaryuk, R.H. Spatschek, L.E.W. Ladre, Phys. Lett. A 101, 517 (1984); E.W. Laedke, K.H. Spatschek, M. Wlkens, A.V. Zolotaryuk, Phys. Rev. A 20, 1161 (1985)

    Article  ADS  Google Scholar 

  • A.S. Davydov, Solitons in molecular systems (Dordrocht, Kluwer Publisher, 1990), p. 227

  • T. Fraggs, St. Pnevmatikos, E.N. Economon, Phys. Lett. A142, 361 (1989)

  • M. Peyrared, St. Pnevmatikos, N. Flytzanis, Phys. Rev. A 36, 903(1987); H. Weberpals, R.H. Spatschek, Phys. Rev. A 36, 2946 (1987); J. Halding, P.S. Lomdahl, Phys. Rev. A 37, 2608 (1988); R.Mittal, I.A. Howard, Physica D 125, 179 (1999)

    Article  ADS  Google Scholar 

  • D. Hochstrasser, H. Buttner, H. Dosfontaines, M. Peyrared, Phys. Rev. A 38, 5332 (1988); H. Desfontaines, M. Peyrared, Phys. Lett. A 142, 128 (1989)

    Article  ADS  Google Scholar 

  • St. Pnevmatikos, Phys. Rev. Lett. 60, 1534 (1988); Phys. Lett. A 112, 249 (1987); J.M. Braum, Yu. S. Kivshar, Phys. Lett. A 149, 119 (1990); Phys. Rev. B 43, 1060 (1991); St. Pnevmatikos, N. Flytzanis, A.R. Bishop, J. Phys. C. Solid State Phys. 20, 2829 (1987)

    Article  ADS  Google Scholar 

  • J.F. Nagle, S.T. Nagle, J. Membr. Biol. 74, 1 (1983); J.F. Nagle, H.J. Morowitz, Proc. Natl. Acad. Sci. USA 75, 298 (1976); J.F. Nagle, M. Mille, H.J. Morowitz, J. Chem. Phys. 72, 3959 (1980)

    Article  Google Scholar 

  • A. Godzik, Chem. Phys. Lett. 171, 217 (1990)

    Article  ADS  Google Scholar 

  • A.V. Zolotaryuk, A.V. Savin, E. Economou, Phys. Rev. B 57, 234 (1998)

    Article  ADS  Google Scholar 

  • A.V. Zolotaryuk, St. Pnevmatikos, Phys. Lett. A 142, 233 (1996); Yu. S. Kivshar, Phys. Rev; A 43, 3117 (1991); A.V. Zolotaryuk, M. Peyrared, K.H. Sputschek, Phys. Rev. E 62, 5706 (2000)

    Google Scholar 

  • St. Pnermatikos, A.V. Savin, A.V. Zolotariuk, Y.S. Kivshar, M.J. Velgakis, Phys. Rev. A 43, 5518 (1991)

    Article  ADS  Google Scholar 

  • St. Pnevmatikos, Y.S. Kivshar, M.J. Valgakis, A.V. Zolotaryuk, Phys. Lett. A 173, 43 (1993); G.P. Tsironis, St. Pnevmatikos, Phys. Rev. B 39, 7161 (1989)

    Article  ADS  Google Scholar 

  • E.S. Kryachko, Solid Stat. Commun. 65, 1609 (1988)

    Article  ADS  Google Scholar 

  • Y.P. Mei, J.R. Yan, X.H. Yan, J.Q. You, Phys. Rev. B 48, 575 (1993); Y.P. Mei, J.R. Yan, Phys. Lett. A 180, 259 (1993)

    ADS  Google Scholar 

  • I. Chochliouros, I. Pouget, J. Phys.: Condens. Matter 7, 8741 (1995); I. Bontis, Proton transfer in hydrogen bonded systems (Plenum Press, London, 1992)

    Article  ADS  Google Scholar 

  • M. Eigen, L. de Maeyer, Proc. Roy. Soc. A 247, 505 (1958)

    Article  ADS  Google Scholar 

  • X.F Pang (Pang Xiao-feng), H.J.W. Miiller-Kirsten, J. Phys.: Condens. Matter 12, 885 (2000)

    Article  ADS  Google Scholar 

  • X.F. Pang, Y.P. Feng, Chem. Phys. Lett. 373, 392 (2003); X.F. Pang, G. Zundel, Acta of Phys. Sin. 46, 625 (1997) and Chinese Physics 7, 70 (1998)

    Article  ADS  Google Scholar 

  • Pang Xiao-feng, A.F. Jalbout, Phys. Lett. A 330, 245 (2004); X.F. Pang, Chinese Phys. 9(2), 86 (2000); X.F. Pang, Advance of Physics Sin. 22, 214 (2002); X.F. Pang, Phys. Stat. Sol. (b) 221, 1795 (2002)

    Article  ADS  MATH  Google Scholar 

  • Pang Xiao-feng, Theory for Non-Linear Quantum Mechanics (Chinese Chongqing Press, Chongqing, 1994), p. 427 and 795; Soliton Physics (Sichuan Sci. Tech. Press, Chengdu, 2003), pp. 667; Pang Xiao-feng and Feng Yuan-ping, Quantum mechanics in nonlinear systems (World Scientific Publishing Co. New Jersey, 2005), pp. 557–586; Chin. Phys. Lett. 20, 1662 (2003); X.F. Pang et al., Commun. Theor. Phys. 43, 367 (2005)

    Article  Google Scholar 

  • X.F. Pang, Phys. Stat. Sol.(b) 236, 34 (2003); J. Shandong Normal Univ. Sin. (Nature) 15, 43 (2000); X.L. Yan, R.X. Dong, X.F. Pang, Commun. Theor. Phys. 35, 615 (2000)

    Article  ADS  Google Scholar 

  • X.F. Pang, J. Phys.: Condens. Matter 2, 9541 (1990); X.F. Pang, Eur. Phys. J. B 10, 415 (1999) and 12, 297 (2000); X.F. Pang, Phys. Rev. E 49, 4747 (1994) and E 62, 6989 (2000); X.F. Pang, Acta Math. Scienties 13 437 (1993); X.F. Pang, Chinese Phys. Lett. 10, 381 and 437 and 517 (1993); X.F. Pang, Chinese Science Bulletin 38, 1557 and 1665 (1993); X.F. Pang, Acta Physica Slovak 46, 89 (1998); X.F. Pang, J. Low. Temp. Phys. 58, 334 (1985)

    Article  ADS  Google Scholar 

  • A. Gordon, Physica B 146, 373 (1987); 150, 319 (1988); A. Gordon, Solid State Commun. 69, 1113 (1989)

    Article  Google Scholar 

  • E.S. Nylund, G.P. Tsironis, Phys. Rev. Lett. 66, 1886 (1991)

    Article  ADS  Google Scholar 

  • G.E. Walrafen, J. Chem. Phys. 36, 1035 (1962); G.E. Walrafen, J. Chem. Phys. 40, 3249 (1964); G.E. Walrafen, J. Chem. Phys. 44, 1546 (1966); G.E. Walrafen, J. Chem. Phys. 47, 114 (1967); G.E. Walrafen, J. Chem. Phys. 48, 244 (1968); G.E. Walrafen, J. Chem. Phys. 50, 560 (1969); 52, 4276 (1970); G.E. Walrafen, M.S. Hokmabadi, W.H. Yang, J. Chem. Phys. 85, 6964 (1986); G.E. Walrafen, M.R. Fisher, M.S. Hokmabadi, W.H. Yang, J. Chem. Phys. 85, 6970 (1986)

    Article  ADS  Google Scholar 

  • D. Eisenberg, W. Kauzann, the structure and properties of water (Oxford, London, 1969)

  • F. Aliotta, M.P. Fontana, Optica Acta, 27, 931 (1980)

    Google Scholar 

  • S. Myneni, Y. Luo, L.A. Naslund, M. Cavalleri, L. Ojamae, H. Ogasawaea, A. Pelmenschikov, Ph. Wernet, P. Vaterlein, C. Heske, Z. Gussain, L.G.M. Pettersson, A.Nillsson, J. Phys.: Condens. Matter 14, L213 (2002)

  • A.F. Huxley, Prog. Biophys. Biophys. Chem. 7, 235 (1957); A.F. Huxley, Nature 173, 971 (1954)

    Google Scholar 

  • A.D. Koutselose, J. Chem, Phys. 102, 7216 (1995)

    Google Scholar 

  • M.W. Evans, J. Chem. Phys. 76, 5473 (1982); M.W. Evans, J. Chem. Phys. 76, 5480 (1982); M.W. Evans, J. Chem. Phys. 77, 463 (1982); M.W. Evans, J. Chem. Phys. 78, 925 (1983); 87, 6040 (1987)

    Article  ADS  Google Scholar 

  • O.G. Mouritsen, Phys. Rev. B 18, 465 (1978); 22, 1127 (1980)

    Article  ADS  Google Scholar 

  • S. Chikazumi, Physics in High Magnetic Fields (Springer-Verlag, Belin, 1981)

  • P.G. Kusalik, J. Chen, Phys. 103, 10174 (1995)

    Google Scholar 

  • J.C. Dwicki, et al., J. Am. Chem. Soc. 99, 7403 (1997)

    Google Scholar 

  • K. Binder, Applications of the Monte Carlo Method (Springer-Verlag, Berlin, 1984)

  • V.N. Bingi, Biophysics 37, 502 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, X. The conductivity properties of protons in ice and mechanism of magnetization of liquid water. Eur. Phys. J. B 49, 5–23 (2006). https://doi.org/10.1140/epjb/e2006-00020-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00020-6

Keywords

Navigation