Skip to main content
Log in

Damage growth in random fuse networks

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The correlations among elements that break in random fuse network fracture are studied, with disorder strong enough to allow for volume damage before final failure. The growth of microfractures is found to be uncorrelated above a lengthscale, that increases as the final breakdown approaches. Since the fuse network strength decreases with sample size, asymptotically the process resembles more and more mean-field-like (“democratic fiber bundle”) fracture. This is found from the microscopic dynamics of avalanches or microfractures, from a study of damage localization via entropy, and from the final damage profile. In particular, the last one is statistically constant, except exactly at the final crack zone, in spite of the fact that the fracture surfaces are self-affine. This also implies that the correlations in damage are not extensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.A. Lockner et al., Nature 350, 39 (1991)

    Article  Google Scholar 

  • A. Petri, G. Paparo, A. Vespignani, A. Alippi, M. Costantini, Phys. Rev. Lett. 73, 3423 (1994)

    Article  PubMed  Google Scholar 

  • A. Guarino, A. Garcimartin, S. Ciliberto, Eur. Phys. J. B 6, 13 (1998); A. Garcimartin et al., Phys. Rev. Lett 79, 3202 (1997)

    Google Scholar 

  • L.C. Krysac, J.D. Maynard, Phys. Rev. Lett. 81, 4428 (1998)

    Article  Google Scholar 

  • L.I. Salminen, A.I. Tolvanen, M.J. Alava, Phys. Rev. Lett. 89, 185503 (2002)

    Article  PubMed  Google Scholar 

  • B.B. Mandelbrot, D.E. Passoja, A.J. Paullay, Nature (London) 308, 721 (1984)

    Article  Google Scholar 

  • E. Bouchaud, J. Phys.: Condens. Matter 9, 4319 (1997)

    Article  Google Scholar 

  • P. Daguier, B. Nghiem, E. Bouchaud, F. Creuzet, Phys. Rev. Lett. 78, 1062 (1997)

    Article  Google Scholar 

  • M. Kloster, A. Hansen, P.C. Hemmer, Phys. Rev. E 56, 2615 (1997)

    Article  Google Scholar 

  • S. Zapperi et al., Phys. Rev. Lett. 78, 1408 (1997)

    Article  Google Scholar 

  • Chapters 4–7 in Statistical models for the fracture of disordered media, edited by H.J. Herrmann, S. Roux (North-Holland, Amsterdam, 1990)

  • P.M. Duxbury, P.L. Leath, P.D. Beale, Phys. Rev. B 36, 367 (1987); P.M. Duxbury, P.L. Leath, P.D. Beale, Phys. Rev. Lett. 57, 1052 (1986)

    Article  Google Scholar 

  • B. Kahng, G.G. Batrouni, S. Redner, L. de Arcangelis, H.J. Herrmann, Phys. Rev. B 37, 7625 (1988)

    Article  Google Scholar 

  • A. Hansen, E.L. Hinrichsen, S. Roux, Phys. Rev. Lett. 66, 2476 (1991)

    Article  PubMed  Google Scholar 

  • V. Räisänen, M. Alava, E. Seppälä, P.M. Duxbury, Phys. Rev. Lett. 80, 329 (1998)

    Article  Google Scholar 

  • E.T. Seppälä, V.I. Räisänen, M.J. Alava, Phys. Rev. E 61, 6312 (2000)

    Article  Google Scholar 

  • J. Kertész, V.K. Horvath, F. Weber, Fractals 1, 67 (1993)

    Google Scholar 

  • T. Engoy, K.J. Maloy, A. Hansen, Phys. Rev. Lett. 73, 834 (1994)

    Article  PubMed  Google Scholar 

  • J. Rosti et al., Eur. Phys. J. B 19, 259 (2001)

    Article  Google Scholar 

  • L.I. Salminen, M.J. Alava, K.J. Niskanen, Eur. Phys. J. B 32, 369 (2003)

    Google Scholar 

  • S. Zapperi, P. Ray, H.E. Stanley, A. Vespignani, Phys. Rev. E 59, 5049 (1999)

    Article  Google Scholar 

  • S. Zapperi, P.K.V.V. Nukala, S. Simunovic, Phys. Rev. E 71, 026106 (2005)

    Article  Google Scholar 

  • For 3d RFN’s the situation is not so clear-cut: V.I. Räisänen, M.J. Alava, R.M. Nieminen, Phys. Rev. B 58, 14288 (1998)

    Article  Google Scholar 

  • M. Minozzi, G. Caldarelli, L. Pietronero, S. Zapperi, Eur. Phys. J. B 36, 203 (2003)

    Google Scholar 

  • A. Hansen, J. Schmittbuhl, Phys. Rev. Lett. 90, 045504 (2003)

    Article  PubMed  Google Scholar 

  • T. Ramstad, J.O.H. Bakke, J. Bjelland, T. Stranden, A. Hansen, e-print cond-mat/0311606

  • M. Barthelemy, R. da Silveira, H. Orland, Europhys. Lett. 57, 831 (2002)

    Article  Google Scholar 

  • W.A. Curtin, Phys. Rev. Lett. 80, 1445 (1998)

    Article  Google Scholar 

  • P. Van, C. Papenfuss, W. Muschik, Phys. Rev. E 62, 6206 (2000)

    Article  Google Scholar 

  • A. Delaplace, G. Pijaudier-Cabout, S. Roux, J. Mech. Phys. Solids 44, 99 (1996)

    Article  MathSciNet  Google Scholar 

  • Since the original version of the manuscript was submitted to the cond-mat preprint archive, the entropy analysis has also been used for much larger ensembles of RFN data; the results support the picture of uncorrelated damage (P.K.V.V. Nukala, personal communication)

  • P.K.V.V. Nukala, S. Simunovic, S. Zapperi, J. Stat. Mech. Theo. Expt., P08001 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Alava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reurings, F., Alava, M. Damage growth in random fuse networks. Eur. Phys. J. B 47, 85–91 (2005). https://doi.org/10.1140/epjb/e2005-00292-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00292-2

Keywords

Navigation