Skip to main content
Log in

Microwave control of transport through a chaotic mesoscopic dot

  • Mesoscopic Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We establish analogy between a microwave ionization of Rydberg atoms and a charge transport through a chaotic quantum dot induced by a monochromatic field in a regime with a potential barrier between dot contacts. We show that the quantum coherence leads to dynamical localization of electron excitation in energy so that only a finite number of photons is absorbed inside the dot. The theory developed determines the dependence of localization length on dot and microwave parameters showing that the microwave power can switch the dot between metallic and insulating regimes. ultiphoton ionization and excitation to highly excited states (e.g., Rydberg states)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B.V. Chirikov, in Chaos and Quantum Physics, Les Houches Lecture Series 52, edited by M.-J. Giannoni, A. Voros, J. Zinn-Justin (North-Holland, Amsterdam, 1991), p. 443

  • G. Casati, B.V. Chirikov, J. Ford, F.M. Izrailev, Lecture Notes in Physics 93, 334 (1979)

    Google Scholar 

  • D.L. Shepelyansky, preprint Inst. of Nucl. Phys. N. 83-61 (Novosibirsk, 1983); G. Casati, B.V. Chirikov, D.L. Shepelyansky, Phys. Rev. Lett. 53, 2525 (1984)

    Article  Google Scholar 

  • E.J. Galvez, B.E. Sauer, L. Moorman, P.M. Koch, D. Richards, Phys. Rev. Lett. 61, 2011 (1988)

    Article  PubMed  Google Scholar 

  • J.E. Bayfield, G. Casati, I. Guarneri, D.W. Sokol, Phys. Rev. Lett. 63, 364 (1989)

    Article  PubMed  Google Scholar 

  • M. Arndt, A. Buchleitner, R.N. Mantegna, H. Walther, Phys. Rev. Lett. 67, 2435 (1991)

    Article  PubMed  Google Scholar 

  • H. Maeda, T.F. Gallagher, Phys. Rev. Lett. 93, 193002 (2004)

    PubMed  Google Scholar 

  • F.L. Moore, J.C. Robinson, C.F. Bharucha, B. Sundaram, M.G. Raizen, Phys. Rev. Lett. 75, 4598 (1995)

    Article  PubMed  Google Scholar 

  • N.B. Delone, V.P. Krainov, D.L. Shepelyansky, Sov. Phys. Uspekhy 26, 551 (1983)

    Google Scholar 

  • Th. Zimmermann, L.S. Cederbaum, H.-D. Meyer, H. Köppel, J. Phys. Chem. 91, 4446 (1987)

    Article  Google Scholar 

  • H. Friedrich, D. Wintgen, Phys. Rep. 1983, 37 (1989)

    Google Scholar 

  • I.P. Kornfeld, S.V. Fomin, Ya. G. Sinai, Ergodic theory (Springer, Berlin, 1982)

  • O. Bohigas, M.J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984)

    Article  Google Scholar 

  • M.V. Berry, M. Robnik, J. Phys. A 19, 1365 (1986)

    Google Scholar 

  • D. Shepelyansky, Physica D 28, 103 (1987)

    Google Scholar 

  • G. Benenti, G. Casati, D.L. Shepelyansky, Eur. Phys. J. D 5, 311 (1999)

    Google Scholar 

  • C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997)

    Article  Google Scholar 

  • Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000)

    Article  Google Scholar 

  • M. Robnik, J. Phys. A 16, 3971 (1983); M. Robnik, J. Phys. A 17, 1049 (1984)

    Google Scholar 

  • T. Prosen, M. Robnik, J. Phys. A 26, L319 (1993); T. Prosen, Ann. Phys. (NY) 235, 115 (1994)

    Article  Google Scholar 

  • Equation (3) assumes that the energy excitation ħωlφ remains small compared to EF, at large ω it gives a noticeable fraction of EF that leads to horizontal error bars in Figure 3

  • Also the size of field oscillations should be larger than the wavelength implying epsilon/(m ω2) > R/nF1/2

  • R. Artuso, G. Casati, I. Guarneri, Phys. Rev. E 51, R3807 (1995)

  • While in experiments it may be not easy to vary directly a dot shape, it may be possible to introduce a magnetic field which should make the dynamics quasi-integrable as soon as the Larmor radius becomes much smaller than the dot size. For a dot with parameters \({\cal A}_0\) and ne0 discussed above this corresponds to a magnetic field B ∼1 T

  • D.J. Thouless, Phys. Rev. Lett. 39, 1167 (1977)

    Article  Google Scholar 

  • A.A. Bykov, G.M. Gusev, Z.D. Kvon, D.I. Lubyshev, V.P. Migal’, JETP Lett. 49, 13 (1989)

    Google Scholar 

  • R. Deblock, Y. Noat, B. Reulet, H. Bouchiat, D. Mailly, Phys. Rev. B 65, 075301 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prosen, T., Shepelyansky, D. Microwave control of transport through a chaotic mesoscopic dot. Eur. Phys. J. B 46, 515–518 (2005). https://doi.org/10.1140/epjb/e2005-00282-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00282-4

Keywords

Navigation