Skip to main content

Advertisement

Log in

Abstract.

We propose a scheme for constructing classical spin Hamiltonians from Hunds coupled spin-fermion models in the limit JH/t →∞. The strong coupling between fermions and the core spins requires self-consistent calculation of the effective exchange in the model, either in the presence of inhomogeneities or with changing temperature. In this paper we establish the formalism and discuss results mainly on the “clean” double exchange model, with self consistently renormalised couplings, and compare our results with exact simulations. Our method allows access to system sizes much beyond the reach of exact simulations, and we can study transport and optical properties of the model without artificial broadening. The method discussed here forms the foundation of our papers [Phys. Rev. Lett. 91, 246602 (2003), and Phys. Rev. Lett. 92, 126602 (2004)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • C. Zener, Phys. Rev. 82, 403 (1951)

    Article  Google Scholar 

  • P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)

    Article  Google Scholar 

  • P.G. de Gennes, Phys. Rev. 118, 141 (1960)

    Article  Google Scholar 

  • K. Kubo, N. Ohata, J. Phys. Soc. Jpn 33, 21 (1972)

    Article  Google Scholar 

  • A.P. Ramirez, J. Phys. Condens Matter 9, 8171 (1997); E. Dagotto et al., Phys. Rep. 344, 1 (2001), Colossal Magnetoresistive Oxides, edited by Y. Tokura (Gordon & Breach, 2000); M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001)

    Article  Google Scholar 

  • See article by A.J. Millis, in Colossal Magnetoresistive Oxides, edited by Y. Tokura (Gordon & Breach, 2000)

  • S. Kumar, P. Majumdar, Phys. Rev. Lett. 91, 246602 (2003)

    Article  PubMed  Google Scholar 

  • S. Kumar, P. Majumdar, Phys. Rev. Lett. 92, 126602 (2004)

    Article  PubMed  Google Scholar 

  • E. Muller-Hartmann, E. Dagotto, Phys. Rev. B 54, R6819 (1996)

  • H. Aliaga, B. Normand, K. Hallberg, M. Avignon, B. Alascio, Phys. Rev. B 64, 024422 (2001)

    Article  Google Scholar 

  • J.L. Alonso, J.A. Capitan, L.A. Fernandez, F. Guinea, V. Martin-Mayor, Phys. Rev. B 64, 054408 (2001)

    Article  Google Scholar 

  • A. Moreo, M. Mayr, A. Feiguin, S. Yunoki, E. Dagotto, Phys. Rev. Lett. 84, 5568 (2000); J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, E. Dagotto, Phys. Rev. Lett. 87, 277202 (2001)

    Article  PubMed  Google Scholar 

  • M. Yamanaka, W. Koshibae, S. Maekawa, Phys. Rev. Lett. 81, 5604 (1998)

    Article  Google Scholar 

  • E.E. Narimanov, C.M. Varma, Phys. Rev. B 65, 024429 (2002)

    Article  Google Scholar 

  • D.I. Golosov, Phys. Rev. B 58, 8617 (1998)

    Article  Google Scholar 

  • J.L. Alonso, L.A. Fernandez, F. Guinea, V. Laliena, V. Martin-Mayor, Phys. Rev. B 63, 064416 (2001)

    Article  Google Scholar 

  • N. Furukawa, J. Phys. Soc. Jpn 63, 3214 (1995)

    Article  Google Scholar 

  • K. Nagai et al., J. Phys. Soc. Jpn 69, 1837 (2000)

    Article  Google Scholar 

  • S. Yunoki, J. Hu, A.L. Malvezzi, A. Moreo, N. Furukawa, E. Dagotto, Phys. Rev. Lett. 80, 845 (1998); E. Dagotto, S. Yunoki, A.L. Malvezzi, A. Moreo, J. Hu, Phys. Rev. B 58, 6414 (1998)

    Article  Google Scholar 

  • M.J. Calderon, L. Brey, Phys. Rev. B 58, 3286 (1998)

    Article  Google Scholar 

  • Y. Motome, N. Furukawa, J. Phys. Soc. Jpn 68, 3853 (1999); J. Phys. Soc. Jpn 69, 3785 (2000)

    Article  Google Scholar 

  • Y. Motome, N. Furukawa, J. Phys. Soc. Jpn 72, 2126 (2003); Y. Motome, N. Furukawa, Phys. Rev. B 68, 144432 (2003). The authors use an \({\cal O}(N)\) ‘polynomial expansion’ Monte Carlo technique to access large system sizes ~163. Unfortunately, there seems to be no benchmark or data on this method for systems involving magnetic phase competetion

    Article  Google Scholar 

  • J.L. Alonso et al., Nucl. Phys. B 596, 587 (2001). The hybrid MC technique can apparently access sizes ~163, far beyond the reach of ED based techniques. However, there does not seem to be any follow up in disordered problems

    Article  Google Scholar 

  • DMFT cannot capture the quantum interference effects that lead to Anderson localisation. However, in the presence of strong binary disorder an insulating phase can arise due to a gap at the Fermi level, as for example in B.M. Letfulov, J.K. Freericks, Phys. Rev. B 64, 174409 (2001); M. Auslender, E. Kagan, Phys. Rev. B 65, 012408 (2001). This is unlike standard Anderson localisation where the disorder averaged density of states is finite even in the insulating phase

    Article  Google Scholar 

  • M. Uehara et al., Nature 399, 560 (1999)

    Article  Google Scholar 

  • Our method should not be confused with the ‘self-consistent renormalisation’ scheme developed by T. Moriya and coworkers in the context of spin fluctuations in d electron systems

  • R.S. Fishman, M. Jarrell, Phys. Rev. B 67, 100403(R) (2003)

    Article  Google Scholar 

  • H. Roder, R.R.P. Singh, J. Zang, Phys. Rev. B 56, 5084 (1997).

    Article  Google Scholar 

  • see e.g., G.D. Mahan, Many Particle Physics (Plenum, New York, 1990)

  • S. Kumar, P. Majumdar, to be published

  • M. Takahashi, Phys. Rev. B 36, 3791 (1987)

    Article  Google Scholar 

  • Comparing with results of other recent MC techniques, at n=0.5 the L→∞ extrapolation of both hybrid MC [23] and polynomial expansion MC [22] give Tc ∼0.14t. We do not have finite size scaling data but can guess that our L →∞ Tc will be ~0.18t

  • M.E. Fisher, J.S. Langer, Phys. Rev. Lett. 20, 665 (1968)

    Google Scholar 

  • I.V. Solovyev, Phys. Rev. B 67, 014412 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Majumdar, P. Double exchange models: self consistent renormalisation. Eur. Phys. J. B 46, 315–324 (2005). https://doi.org/10.1140/epjb/e2005-00261-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00261-9

Keywords

Navigation