Skip to main content
Log in

Phonon spectra and heat capacity of Li2B4O7 and LiB3O5 crystals

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The results of calculations of the phonon dispersion, the vibrational density of states and the heat capacity of lithium tetraborate and lithium triborate crystals are presented. They are obtained in the framework of a potential model that takes into account the non-equivalence of boron atoms in different structural positions (BO3 and BO4 units). A symmetry analysis of the phonon modes at Γ point was performed, and calculated frequencies are compared to experimental spectra. Analysis of Li contributions to the vibrational density of states reveals that the Li-O bonds in both crystals are relatively weak. This is in line with the experimentally observed high mobility of lithium ions at high temperatures. A good agreement between calculated and measured heat capacities from the literature was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • B. Wu, F. Xie, C.C.D. Deng, Z. Xu, Opt. Commun. 88, 451 (1992)

    ADS  Google Scholar 

  • B.S.R. Sastry, F.A. Hummel, J. Am. Ceram. Soc. 41, 7 (1958)

    Google Scholar 

  • B.S.R. Sastry, F.A. Hummel, J. Am. Ceram. Soc. 42, 216 (1959)

    Google Scholar 

  • V.I. Aver’yanov, A.E. Kalmykov, Glass Phys. Chemistry 16, 492 (1990)

    Google Scholar 

  • J. Huang, Y. Shen, Appl. Phys. Lett. 15, 1579 (1991)

    Article  ADS  Google Scholar 

  • Mao Hongnei, Appl. Phys. Lett. 61, 1148 (1992)

    Article  Google Scholar 

  • T. Ukachi, R.J. Lane, J. Opt. Soc. Amer. B. 9, 1128 (1992)

    Article  ADS  Google Scholar 

  • C. Furetta, P.S. Weng, Operation Thermoluminescent dosimetry (World Scientific, London, 1998)

  • K. Mahesh, P.S. Weng, C. Furetta, Thermoluminescence in solids and its applications (Nuclear Technology Publishing, Ashford, 1989)

  • E.F. Dolzhenkova, V.N. Baumer, A.V. Tolmachev, B.M. Hunda, P.P. Puga, 6th Intern. Confer. on Inorganic Scintillators and their Applications (Book of Abstracts, Chamonix, France, 2001), p. 210

  • S.F. Radaev, L.A. Muradyan, L.F. Malakhova, Y.A. Burak, V.I. Simonov, Kristallografiya 34, 1400 (1989)

    Google Scholar 

  • S.F. Radaev, B.A. Maximov, V.I. Simonov, B.V. Andreev, V.A. D’yakov, Acta Crystallogr. B 48, 154 (1992)

    Article  Google Scholar 

  • V.V. Maslyuk, T. Bredow, H. Pfnür, Eur. Phys. J. B 41, 281 (2004)

    ADS  Google Scholar 

  • J.D. Gale, Phil. Mag. B 73, 3 (1996); J.D. Gale, J. Chem. Soc. Faraday Trans. 93, 629 (1997); J.D. Gale, A.L. Rohl, Molec. Simulation 29, 291 (2003)

    Google Scholar 

  • P.P. Ewald, Ann. Phys. 64, 253 (1921)

    MATH  Google Scholar 

  • P.M. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1989)

  • W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    ADS  Google Scholar 

  • M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)

    Article  ADS  Google Scholar 

  • D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1976)

  • G.L. Raul, W. Taylor, J. Phys. C: Solid State Phys. 15, 1753 (1982)

    ADS  Google Scholar 

  • H.R. Xia, L.X. Li, H. Yu et al., J. Mater. Res. 16, 3464 (2001)

    ADS  Google Scholar 

  • N.D. Zhigadlo, M. Zhang, E.K.H. Salje, J. Phys.: Condens. Matter 13, 6551 (2001)

    ADS  Google Scholar 

  • A.V. Vdovin, V.N. Moiseenko, V.S. Gorelik, Ya.V. Burak, Phys. Sol. State 43, 1648 (2001)

    Article  ADS  Google Scholar 

  • Ya.V. Burak, I.B. Trach, V.T. Adamiv, I.M. Teslyuk, Ukrain. Phys. J. 47, 923 (2002)

    Google Scholar 

  • V.N. Moiseenko, A.V. Vdovin, Ya.V. Burak, Optic and Spectroscopy 81, 620 (1996)

    Google Scholar 

  • H.R. Xia, S.M. Dong, Q.M. Lu et al., J. Raman Spect. 35, 148 (2004)

    Google Scholar 

  • O.V. Kovalev, Representations of the Crystallographic Space Groups: Irreducible Representations, Induced Representations, and Corepresentations (Gordon and Breach, Philadelphia, 1993)

  • J. Kučera, P. Nachtigall, Collect. Czech. Chem. Commun. 68, 1848 (2003)

    Google Scholar 

  • H. Lammert, M. Kunow, A. Heuer, Phys. Rev. Lett. 90, 215901 (2003)

    ADS  Google Scholar 

  • A. Heuer, M. Kunow, M. Vogel, R.D. Banhatti, Phys. Chem. Chem. Phys. 4, 3185 (2002)

    Google Scholar 

  • N.P. Techanovich, A.U. Sheleg, Ya.V. Burak, Phys. Sol. State 32, 2513 (1990)

    Google Scholar 

  • A.U. Sheleg, T.I. Dekola, N.P. Tekhanovich, A.M. Luginets, Phys. Sol. State 39, 624 (1997)

    Google Scholar 

  • V.V. Zaretskii, Ya.V. Burak, Phys. Sol. State 31, 960 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Maslyuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslyuk, V., Bredow, T. & Pfnür, H. Phonon spectra and heat capacity of Li2B4O7 and LiB3O5 crystals. Eur. Phys. J. B 42, 461–466 (2004). https://doi.org/10.1140/epjb/e2005-00003-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00003-1

Keywords

Navigation