Skip to main content
Log in

Flux dynamics, superconducting, and normal state properties of Gd(Ba \(\mathsf{_{2-x}}\)Pr\(\mathsf{_{x}}\))Cu\(\mathsf{_{3}}\)O \(\mathsf{_{7 + \delta}}\)

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Gd(Ba2-x Pr x )Cu3O\(_{7 + \delta}\) single phase polycrystalline samples with \(0.0\le x\le 1.0\) were investigated for structural, electronic and flux dynamics properties. Two-dimensional variable range hopping (VRH) is the dominant conduction mechanism in the normal state of the system. Pr doping strongly localizes the carriers in normal state, and finally causes the suppression of superconductivity. The effect of Pr substitution in 123 structure of HTSC at R or Ba sites is to increase the pseudogap temperature \(T_{\rm s}\), although, Pr at Ba sites has a stronger effect on the increase of \(T_{\rm s}\) and suppression of superconductivity. The magnetoresistance of the samples have been studied within thermally activated flux creep and the Ambegaokar and Halperin phase slip models. The derived critical current density, H c2(T), H c2 (0), and superconducting coherence length \(\xi \) show that the Pr doping, like weak links, decreases the vortex flux pinning energy. Our results imply that understanding the real suppression mechanism of superconductivity by Pr doping in HTSC is connected crucially to the exact position of Pr in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Yamani, M. Akhavan, Phys. Rev. B 56, 7894 (1997)

    Google Scholar 

  2. L. Soderholm, K. Zhang, D.G. Hinks, M.A. Beno, J.D. Jorgensen, C.U. Segre, I.K. Schuller, Nature 328, 604 (1987)

    Google Scholar 

  3. H. Shakeripour, M. Akhavan, Supercond. Sci. Technol. 14, 213 (2001)

    Google Scholar 

  4. H.A. Blackstead, J.D. Dow, Phys. Rev. B 51, 11830 (1995)

    Google Scholar 

  5. Z. Zou, J. Ye, K. Oka, Y. Nishihara, Phys. Rev. Lett. 80, 1074 (1998)

    Google Scholar 

  6. M. Luszczek, W. Sadowski, T. Klimczuk, J. Olchowik, B. Susla, R. Czajka, Physica C 322, 57 (1999)

    Google Scholar 

  7. F.M. Araujo-Moreira, P.N. Lisboa-Filho, S.M. Zanetti, E.R. Leite, W.A. Ortiz, Physica B 284-288, 1033 (2000)

  8. T. Usagawa, Y. Ishimaru, J. Wen, T. Utagawa, S. Koyama, Y. Enomoto, Appl. Phys. Lett. 72, 1772 (1998)

    Google Scholar 

  9. M. Akhavan, Physica B 321, 265 (2002)

    Google Scholar 

  10. M. Akhavan, Phys. Stat. Sol. (b) 241, 1242 (2004)

    Google Scholar 

  11. J.J. Neumeier, T. Bjornholm, M.B. Maple, I.K. Schuller, Phys. Rev. Lett. 63, 2516 (1989)

    Google Scholar 

  12. G.Y. Guo, W.M. Temmerman, Phys. Rev. B 41, 6372 (1990)

    Google Scholar 

  13. R. Fehrenbacher, T.M. Rice, Phys. Rev. Lett. 70, 3471 (1993)

    Google Scholar 

  14. H.A. Blackstead, D.B. Chrisey, J.D. Dow, J.S. Horwitz, A.E. Klunzinger, D.B. Pulling, Phys. Lett. A 207, 109 (1995)

    Google Scholar 

  15. M.J. Kramer, K.W. Dennis, D. Falzgraf, R.W. McCallum, S.K. Malik, W.B. Yelon, Phys. Rev. B 56, 5512 (1997)

    Google Scholar 

  16. M.R. Mohammadizadeh, H. Khosroabadi, M. Akhavan, Physica B 321, 301 (2002)

    Google Scholar 

  17. I.D. Brown, D. Altermatt, Acta Cryst. B 41, 244 (1985); I.D. Brown, J. Solid State Chem. 82, 122 (1989)

    Google Scholar 

  18. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Google Scholar 

  19. S. Kleefisch, B. Welter, A. Marx, L. Alff, R. Gross, M. Naito, Phys. Rev. B 63, 100507 (2001)

    Google Scholar 

  20. M.R. Mohammadizadeh, M. Akhavan, Phys. Rev. B 68, 104516 (2003)

    Google Scholar 

  21. C. Quitmann, D. Andrich, C. Jarchow, M. Fleuster, B. Beschoten, G. Guntherodt, V.V. Moshchalkov, G. Mante, R. Manzke, Phys. Rev. B 46, 11813 (1992)

    Google Scholar 

  22. M. Covington, L.H. Greene, Phys. Rev. B 62, 12440 (2000)

    Google Scholar 

  23. Y. Takano, S. Takayanagi, S. Ogawa, T. Yamadaya, N. Mori, Solid State Commun. 103, 215 (1997)

    Google Scholar 

  24. W. Jiang, J.L. Peng, J.J. Hamilton, R.L. Greene, Phys. Rev. B 49, 690 (1994)

    Google Scholar 

  25. M.W. Coffey, J.R. Clem, Phys. Rev. Lett. 67, 368 (1991); M.W. Coffey, J.R. Clem, Phys. Rev. B 46, 11757 (1992)

    Google Scholar 

  26. H.L. Liu, A. Zibold, D.B. Tanner, Y.J. Wang, M.J. Burns, K.A. Delin, M.Y. Li, M.K. Wu, Solid State Commun. 109, 7 (1999)

    Google Scholar 

  27. Z. Yamani, M. Akhavan, Supercond. Sci. Technol. 10, 427 (1997)

    Google Scholar 

  28. D.B. Wiles, R.A. Young, J. Appl. Cryst. 14, 149 (1981)

    Google Scholar 

  29. R.A. Young, in: The Rietveld Method, edited by R.A. Young (Oxford University Press, New York, 1993), p. 1

  30. Ch. Bertrand, Ph. Galez, R.E. Gladyshevskii, J.L. Jorda, Physica C 321, 151 (1999)

    Google Scholar 

  31. M. Izumi, T. Yabe, T. Wada, A. Maeda, K. Uchinokura, S. Tanaka, H. Asano, Phys. Rev. B 40, 6771 (1989)

    Google Scholar 

  32. K. Koyama, T. Tange, T. Saito, K. Mizuno, Physica B 281&282, 909 (2000)

  33. Z. Klencsar, E. Kuzmann, Z. Homonnay, A. Vertes, K. Vad, J. Bankuti, T. Racz, M. Bodogh, I. Kotsis, Physica C 304, 124 (1998)

    Google Scholar 

  34. D. Wagener, M. Buchgeister, W. Hiller, S.M. Hosseini, K. Kopitzki, Supercond. Sci. Technol. 4, S211 (1991)

  35. L. Colonescu, F. Cairon, J. Berthon, I. Zelenay, R. Suryanarayanan, Physica B 259-261, 528 (1999)

  36. V.N. Narozhnyi, D. Eckert, K.A. Nenkov, G. Fuchs, K.-H. Muller, T.G. Uvarova, cond-mat/9909107

  37. Z. Zou, Y. Nishihara, Phys. Rev. Lett. 82, 462 (1999)

    Google Scholar 

  38. M. Akhavan, Physica C 250, 25 (1995)

    Google Scholar 

  39. Z. Yamani, M. Akhavan, Physica C 268, 78 (1996)

    Google Scholar 

  40. J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus, W.K. Kwok, Phys. Rev. B 41, 1863 (1990)

    Google Scholar 

  41. M.R. Mohammadizadeh, M. Akhavan, Eur. Phys. J. B 33, 381 (2003)

    Google Scholar 

  42. H. Khosroabadi, M. Modarreszadeh, P. Taheri, M. Akhavan, Phys. Stat. Sol. (c) 1, 1867 (2004)

    Google Scholar 

  43. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Clarendon, Oxford, 1979); B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors, edited by M. Cardona, P. Fulde, H.-J. Queisser (Springer-Verlag, Berlin, 1984)

  44. P.B. Littlewood, C.M. Varma, Phys. Rev. B 45, 12636 (1992)

    Google Scholar 

  45. W.-H. Jung, Physica B 304, 75 (2001)

    Google Scholar 

  46. U. Kabasawa, Y. Tarutani, M. Okamoto, T. Fukazawa, A. Tsukamoto, M. Hiratani, K. Takagi, Phys. Rev. Lett. 70, 1700 (1993)

    Google Scholar 

  47. S.J. Liu, W. Guan, Phys. Rev. B 58, 11716 (1998)

    Google Scholar 

  48. Z. Yamani, M. Akhavan, Solid State Commun. 107, 197 (1998)

    Google Scholar 

  49. H. Khosroabadi, V. Daadmehr, M. Akhavan, Mod. Phys. Lett. B 16, 943 (2002)

    Google Scholar 

  50. M.R. Mohammadizadeh, M. Akhavan, Physica B 336, 410 (2003)

    Google Scholar 

  51. W.H. Tang, J. Gao, J. Phys.: Condens. Matter 11, 8555 (1999)

    Google Scholar 

  52. M.R. Mohammadizadeh, M. Akhavan, Supercond. Sci. Technol. 16, 1216 (2003)

    Google Scholar 

  53. M.R. Mohammadizadeh, M. Akhavan, Supercond. Sci. Technol. 16, 538 (2003)

    Google Scholar 

  54. V. Ambegaokar, B.I. Halperin, Phys. Rev. Lett. 22, 1364 (1969)

    Google Scholar 

  55. J.J. Kim, H.K. Lee, J. Chung, H.J. Shin, H.J. Lee, J.K. Ku, Phys. Rev. B 43, 2962 (1991)

    Google Scholar 

  56. R.H. Koch, V. Foglietti, W.J. Gallagher, G. Koren, A. Gupta, M.P.A. Fisher, Phys. Rev. Lett. 63, 1511 (1989)

    Google Scholar 

  57. Z.H. Wang, S.Y. Ding, Physica C 341-348, 1247 (2000)

  58. T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 6621 (1990)

    Google Scholar 

  59. H. Khosroabadi, V. Daadmehr, M. Akhavan, Iran. J. Phys. Res. 3, 153 (2002)

    Google Scholar 

  60. V. Daadmehr, M. Akhavan, Phys. Stat. Sol. (a) 193, 153 (2002)

    Google Scholar 

  61. L.M. Paulius, C.C. Almasan, M.B. Maple, Phys. Rev. B 47, 11627 (1993)

    Google Scholar 

  62. Y.G. Xiao, B. Yin, J.W. Li, Z.X. Zhao, H.T. Ren, L. Xiao, X.K. Fu, J.A. Xia, Supercond. Science Tech. 7, 623 (1994)

    Google Scholar 

  63. Z.H. Wang, X.W. Cao, Solid State Commun. 109, 709 (1999)

    Google Scholar 

  64. H. Khosroabadi, V. Daadmehr, M. Akhavan, Physica C 384, 169 (2003)

    Google Scholar 

  65. H. Shakeripour, M. Akhavan, Supercond. Sci. Technol. 14, 234 (2001)

    Google Scholar 

  66. J.T. Manscon, J. Giapintzakis, D.M. Ginsberg, Phys. Rev. B 54, 12517 (1996)

    Google Scholar 

  67. C. Li, H. Li, D. Jin, Y. He, G. Xiong, G. Lian, D. Yin, Physica C 341-348, 2047 (2000)

  68. A. Pomar, S.R. Curras, J.A. Veira, F. Vidal, Phys. Rev. B 53, 8245 (1996)

    Google Scholar 

  69. J.S. Moodera, R. Meservey, J.E. Tkaczyk, C.X. Hao, G.A. Gibson, P.M. Tedrow, Phys. Rev. B 37, 619 (1988)

    Google Scholar 

  70. H.S. Gamchi, G.J. Russell, K.N.R. Taylor, Phys. Rev. B 50, 12950 (1994)

    Google Scholar 

  71. B. Oh, K. Char, A.D. Kent, M. Naito, M.R. Beasley, T.H. Geballe, R.H. Hammond, A. Kapitulnik, J.M. Graybeal, Phys. Rev. B 37, 7861 (1988)

    Google Scholar 

  72. H. Shakeripour, M. Akhavan, Iran. J. Phys. Res. 3, 39, (2002)

    Google Scholar 

  73. H. Shakeripour, M. Akhavan, in: Proceedings of the 1st Regional Conference on Magnetic and Superconducting Materials (MSM-99), edited by M. Akhavan, J. Jensen, K. Kitazawa (World Scientific, Singapore, 2000), Vol. A, p. 523

  74. D.T. Verebelyi, D.K. Christen, R. Feenstra, C. Cantoni, A. Goyal, D.F. Lee, M. Paranthaman, P.N. Arendt, R.F. Depaula, J.R. Groves, C. Prouteau, Appl. Phys. Lett. 76, 1755 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akhavan.

Additional information

Received: 4 July 2004, Published online: 23 December 2004

PACS:

74.72.Bk Y-based cuprates - 74.62.Dh Effects of crystal defects, doping and substitution - 74.62.Bf Effects of material synthesis, crystal structure, and chemical composition - 74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric effects, etc.) - 74.25.Op Mixed states, critical fields, and surface sheaths

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadizadeh, M.R., Akhavan, M. Flux dynamics, superconducting, and normal state properties of Gd(Ba \(\mathsf{_{2-x}}\)Pr\(\mathsf{_{x}}\))Cu\(\mathsf{_{3}}\)O \(\mathsf{_{7 + \delta}}\) . Eur. Phys. J. B 42, 321–336 (2004). https://doi.org/10.1140/epjb/e2004-00387-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00387-2

Keywords

Navigation