Skip to main content
Log in

Abstract.

The recently introduced correspondence between one-dimensional two-species driven models and the Zero-Range Process is extended to study the case where the densities of the two species need not be equal. The correspondence is formulated through the length dependence of the current emitted from a particle domain. A direct numerical method for evaluating this current is introduced, and used to test the assumptions underlying this approach. In addition, a model for isolated domain dynamics is introduced, which provides a simple way to calculate the current also for the non-equal density case. This approach is demonstrated and applied to a particular two-species model, where a phase separation transition line is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Schmittmann, R.K.P. Zia, Statistical Mechanics of Driven Diffusive Systems, Vol. 17 of Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic Press, 1995)

  2. D. Mukamel, in Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow, edited by M.E. Cates, M.R. Evans (Institute of Physics Publishing, Bristol, 2000)

  3. M.R. Evans, Braz. J. Phys. 30, 42 (2000)

    Google Scholar 

  4. G.M. Schütz, J. Phys. A 36, R339 (2003)

  5. M.R. Evans, Y. Kafri, H.M. Koduvely, D. Mukamel, Phys. Rev. Lett. 80, 425 (1998); M.R. Evans, Y. Kafri, H.M. Koduvely, D. Mukamel, Phys. Rev. E 58, 2764 (1998)

    Article  Google Scholar 

  6. R. Lahiri, S. Ramaswamy, Phys. Rev. Lett. 79, 1150 (1997); R. Lahiri, M. Barma, S. Ramaswamy, Phys. Rev. E 61, 1648 (2000)

    Article  Google Scholar 

  7. P.F. Arndt, T. Heinzel, V. Rittenberg, J. Phys. A 31, L45 (1998); P.F. Arndt, T. Heinzel, V. Rittenberg, J. Stat. Phys. 97, 1 (1999)

    Article  MATH  Google Scholar 

  8. N. Rajewsky, T. Sasamoto, E.R. Speer, Physica A 279, 123-142 (2000)

    Article  Google Scholar 

  9. Y. Kafri, E. Levine, D. Mukamel, G.M. Schütz, J. Török, Phys. Rev. Lett. 89, 035702 (2002)

    Article  Google Scholar 

  10. Y. Kafri, E. Levine, D. Mukamel, G.M. Schütz, R.D.W. Willmann, Phys. Rev. E 68, 035101 (2003)

    Article  Google Scholar 

  11. M. Clincy, B. Derrida, M.R. Evans, Phys. Rev. E 67, 066115 (2003)

    Article  Google Scholar 

  12. O.J. O’Loan, M.R. Evans, M.E. Cates, Phys. Rev. E 58, 1404 (1998)

    Article  Google Scholar 

  13. Y. Kafri, E. Levine, D. Mukamel, J. Török, J. Phys. A 35, L459 (2002)

  14. J. Krug, Phys. Rev. Lett. 67, 1882 (1991)

    Article  Google Scholar 

  15. S. Katz, J.L. Lebowitz, H. Spohn, J. Stat. Phys. 34, 497 (1984)

    MathSciNet  Google Scholar 

  16. J.S. Hager, J. Krug, V. Popkov, G.M. Schütz, Phys. Rev. E 63, 056110 (2001); Note that the definition of \(\epsilon\) differs from ours by a sign

    Article  Google Scholar 

  17. B. Derrida, V. Hakim, M.R. Evans, V. Pasquier, J. Phys. A 26, 1493 (1993)

    Article  MATH  Google Scholar 

  18. K. Mallick, J. Phys. A 29, 5375 (1996)

    Article  MATH  Google Scholar 

  19. T. Sasamoto, Phys. Rev. E 61, 4980 (2000)

    Article  Google Scholar 

  20. J. Krug, P. Meakin, J. Phys. A 23, L987 (1990); J. Krug, L. Tang, Phys. Rev. E 50, 104 (1994)

    Article  Google Scholar 

  21. J. Krug, Adv. Phys. 46, 139 (1997)

    Google Scholar 

  22. B. Derrida, S.A. Janowsky, J.L. Lebowitz, E.R. Speer, J. Stat. Phys. 73, 813 (1993)

    Google Scholar 

  23. M.E.J. Newman, G.T. Barkema, Monte-Carlo Methods in Statistical Physics (Clarendon Press, Oxford, 1999)

  24. G. Korniss, B. Schmittmann, R.K.P. Zia, Europhys. Lett. 45, 431 (1999); J.T. Mettetal, B. Schmittman, R.K.P. Zia, Europhys. Lett. 58, 653 (2002)

    Article  Google Scholar 

  25. P. Arndt, V. Rittenberg, J. Phys. A 107, 989 (2002)

    Article  MATH  Google Scholar 

  26. R.A. Blythe, M.R. Evans, F. Colaiori, F.H.L. Essler, J. Phys. A 33, 2313 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Levine.

Additional information

Received: 4 May 2004, Published online: 12 October 2004

PACS:

02.50.Ey Stochastic processes - 64.75. + g Solubility, segregation, and mixing; phase separation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M.R., Levine, E., Mohanty, P.K. et al. Modelling one-dimensional driven diffusive systems by the Zero-Range Process. Eur. Phys. J. B 41, 223–230 (2004). https://doi.org/10.1140/epjb/e2004-00314-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00314-7

Keywords

Navigation