Skip to main content
Log in

Effect of orbital currents on the restricted optical conductivity sum rule

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We derive the restricted optical-conductivity sum rule for a model with circulating orbital currents. It is shown that an unusual coupling of the vector potential to the interaction term of the model Hamiltonian results in a non-standard form of the sum rule. As a consequence, the temperature dependence of the restricted spectral weight could be compatible with existing experimental data for high-T c cuprates above the critical temperature T c . We extend our results to the superconducting state, and comment on the differences and analogies between these two symmetry-breaking phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.J.A. Molegraaf, C. Presura, D. van der Marel, P.H. Kes, M. Li, Science 295, 2239 (2002)

    Article  Google Scholar 

  2. A.F. Santander-Syro, R.P.S.M. Lobo, N. Bontemps, Z. Konstantinovic, Z.Z. Li, H. Raffy, Phys. Rev. Lett. 88, 097005 (2002); A.F. Santander-Syro, R.P.S.M. Lobo, N. Bontemps, Z. Konstantinovic, Z.Z. Li, H. Raffy, Europhys. Lett. 62, 568 (2003)

    Article  Google Scholar 

  3. C.C. Homes, S.V. Dordevic, D.A. Bonn, Ruixing Liang, W.N. Hardy, Phys. Rev. B 69, 024514 (2004)

    Article  Google Scholar 

  4. A.F. Santander-Syro, R.P.S.M. Lobo, N. Bontemps, cond-mat/0404290

  5. A.V. Boris, N.N. Kovaleva, O.V. Dolgov, T. Holden, C.T. Lin, B. Keimer, C. Bernhard, Science 304, 708 (2004)

    Article  Google Scholar 

  6. P.F. Maldague, Phys. Rev. B 16, 2437 (1977)

    Article  Google Scholar 

  7. D. Baeriswyl, C. Gros, T.M. Rice, Phys. Rev. B 35, 8391 (1987)

    Article  Google Scholar 

  8. D.J. Scalapino, S.R. White, S. Zhang, Phys. Rev. B 47, 7995 (1993)

    Article  Google Scholar 

  9. J. Jaklič, P. Prelovšek, Adv. Phys. 49, 1 (2000)

    Article  Google Scholar 

  10. A.J. Millis, Strong Interactions in Low Dimensions, edited by D. Baeriswyl, L. De Giorgi (Kluver Accad. Pub, 2003)

  11. D. van der Marel, in Interaction Electrons in Low Dimensions, book series Physics and Chemistry of Materials with Low-Dimensional Structures (Kluwer Academic Publishers, 2003); cond-mat/0301506

  12. D. van der Marel, H.J.A. Molegraaf, C. Presura, I. Santoso, cond-mat/0302169

  13. J.E. Hirsch, F. Marsiglio, Phys. Rev. B 62, 15131 (2000)

    Article  Google Scholar 

  14. M.R. Norman, C. Pépin, Phys. Rev. B 66, 100506 (2002)

    Article  Google Scholar 

  15. T. Eckl, W. Hanke, E. Arrigoni, Phys. Rev. B 68, 014505 (2003)

    Article  Google Scholar 

  16. V.M. Loktev, R.M. Quick, S.G. Sharapov, Phys. Rep. 349, 1 (2001)

    Article  MATH  Google Scholar 

  17. A. Knigavko, J.P. Carbotte, F. Marsiglio, cond-mat/0404153

  18. B.I. Halperin, T.M. Rice, Sol. State Phys. 21, 115 (1968)

    Google Scholar 

  19. I. Affleck, J.B. Marston, Phys. Rev. B 37, 3774 (1988)

    Article  Google Scholar 

  20. A.A. Nersesyan, G.E. Vachanadze, J. Low Temp. Phys. 77, 293 (1989)

    Google Scholar 

  21. H.J. Schulz, Phys. Rev. B 39, 2940 (1989)

    Article  Google Scholar 

  22. C.M. Varma, Phys. Rev. B 55, 14554 (1997)

    Article  Google Scholar 

  23. M.V. Eremin, I.A. Larionov, Pis’ma Zh. Eksp. Teor. Fiz. 68, 583 (1998) [JETP Lett. 68, 611 (1998)].

    Google Scholar 

  24. E. Cappelluti, R. Zeyher, Phys. Rev. B 59, 6475 (1999)

    Article  Google Scholar 

  25. L. Benfatto, S. Caprara, C. Di Castro, Eur. Phys. J. B 17, 95 (2000)

    Article  Google Scholar 

  26. S. Chakravarty, R.B. Laughlin, D.K. Morr, C. Nayak, Phys. Rev. B 63, 094503 (2001)

    Article  Google Scholar 

  27. S. Tewari, H.Y. Kee, C. Nayak, S. Chakravarty, Phys. Rev. B 64, 224516 (2001)

    Article  Google Scholar 

  28. Q.-H. Wang, J.H. Han, D.-H. Lee, Phys. Rev. Lett. 87, 077004 (2001)

    Article  Google Scholar 

  29. X. Yang, C. Nayak, Phys. Rev. B 65, 064523 (2002)

    Article  Google Scholar 

  30. H.-Y. Kee, Y.B. Kim, Phys. Rev. B 66, 052504 (2002)

    Article  Google Scholar 

  31. D.K. Morr, Phys. Rev. Lett. 89, 106401 (2002)

    Article  Google Scholar 

  32. S. Chakravarty, C. Nayak, S. Tewari, X. Yang, Phys. Rev. Lett. 89, 277003 (2002)

    Article  Google Scholar 

  33. S.G. Sharapov, V.P. Gusynin, H. Beck, Phys. Rev. B 67, 144509 (2003)

    Article  Google Scholar 

  34. C.P. Enz, A Course on Many-Body Theory Applied to Solid-State Physics (World Scientific, Singapore, 1992)

  35. J.R. Schrieffer, Theory of superconductivity (Addison Wesley, 1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Benfatto.

Additional information

Received: 30 April 2004, Published online: 23 July 2004

PACS:

71.10.-w Theories and models of many-electron systems - 74.25.Gz Optical properties - 72.15.-v Electronic conduction in metals and alloys - 74.72.-h Cuprate superconductors (high-T c and insulating parent compounds)

S.G. Sharapov: Present address: Institute for Scientific Interchange, via Settimio Severo 65, 10133 Torino, Italy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benfatto, L., Sharapov, S.G. & Beck, H. Effect of orbital currents on the restricted optical conductivity sum rule. Eur. Phys. J. B 39, 469–473 (2004). https://doi.org/10.1140/epjb/e2004-00219-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00219-5

Keywords

Navigation