Skip to main content
Log in

Abstract.

In this work we present a detailed investigation of native point defects energetics in cubic SiC, using state-of-the-art first principles computational method. We find that, the carbon vacancy is the dominant defect in p-type SiC, regardless the growth conditions. Silicon and carbon antisites are the most common defects in n-type material in Si-rich and C-rich conditions respectively. Interstitial defects and silicon vacancy are less favorite from the energetic point of view. The silicon vacancy tends to transform into a carbon vacancy-antisite complex and the carbon interstitial atom prefers to pair to a carbon antisite. The dumbbell structure is the lowest-energy configuration for the isolated carbon interstitial defect, and the tetrahedral interstitial silicon is a stable structure in p-type and intrinsic conditions, while in n-type material the dumbbell configuration is the stable one. Our results suggest that, in samples grown in Si-rich stoichiometric conditions, native defects are a source of n-doping and of compositional unbalance of nominally intrinsic SiC, in accord with experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.L. More, J. Ryu, C.H. Carter, J. Bentley, R.F. Davis, Cryst. Lattice Defects Amorphous Mater. 12, 243 (1985)

    Google Scholar 

  2. H.J. Kim, R.F. Davis, J. Electrochem. Soc. 133, 2350 (1986)

    Google Scholar 

  3. A. Zywietz, J. Furthmüller, F. Bechstedt, Phys. Rev. B 59, 15166 (1999)

    Article  Google Scholar 

  4. L. Torpo, R.M. Nieminen, K.E. Laasonen, S. Pöykkö, Appl. Phys. Lett. 74, 221 (1999)

    Article  Google Scholar 

  5. L. Torpo, S. Pöykkö, R.M. Nieminen, Phys. Rev. B 57, 6243 (1998)

    Article  Google Scholar 

  6. F. Gao, E.J. Bylaska, W.J. Weber, R. Corrales, Phys. Rev. B 64, 245208 (2001)

    Article  Google Scholar 

  7. M. Bockstedte, M. Heid, O. Pankratov, Phys. Rev. B 67 193102 (2003)

    Google Scholar 

  8. Y. Li, P.J. Lin-Chung, Phys. Rev. B 36, 1130 (1987)

    Article  Google Scholar 

  9. D.N. Talwar, Z.C. Feng, Phys. Rev. B 44, 3191 (1991)

    Article  Google Scholar 

  10. C. Wang, J. Bernholc, R.F. Davis, Phys. Rev. B 38, 12752 (1988)

    Article  Google Scholar 

  11. A. Mattauch, M. Bockstedte, O. Pankratov, Mater. Sci. Forum. 353-356, 353 (2001)

    Google Scholar 

  12. M. Bockstedte, M. Heid, A. Mattausch, O. Pankratov, Mater. Sci. Forum. 389-393, 471 (2002)

    Google Scholar 

  13. A. Mattausch, M. Bockstedte, O. Pankratov, Mater. Sci. Forum. 389-393, 481 (2002)

    Google Scholar 

  14. M. Bockstedte, A. Mattausch, O. Pankratov, Phys. Rev. B 68, 205201 (2003)

    Article  Google Scholar 

  15. S.B. Zhang, J.E. Northrup, Phys. Rev. Lett. 67, 2339 (1991)

    Article  Google Scholar 

  16. G. Makov, M.C. Payne, Phys. Rev. B 51, 4014 (1995)

    Article  Google Scholar 

  17. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  Google Scholar 

  18. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  Google Scholar 

  19. G. Kresse, J. Hafner, Phys. Rev. B 47, R558 (1993); G. Kresse, Thesis, Technische Universität Wien 1993; G. Kresse, J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996); G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  20. D.D. Wangman, W.H. Evans, V.B. Parker, I. Halow, S.M. Baily, R.H. Schumm, Selected Values of Chemical Thermodynamics Properties, Tables for the First Thirty-Four Elements in the Standard Order of Arrangements, Natl. Bur. of Stand. Tech. Note No. 270-3 (U.S. GPO, Washington, D.C., 1968)

  21. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, New Series, Group III, Vol. 17a (Springer, Berlin, 1982), p. 49

  22. G. Makov, R. Shah, M.C. Payne, Phys. Rev. B 53, 15513 (1996)

    Article  Google Scholar 

  23. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)

    Article  Google Scholar 

  24. A. Jääskeläinen, L. Colombo, R. Nieminen, Phys. Rev. B 64, 233203 (2001)

    Article  Google Scholar 

  25. A. Garcia, J.E. Northrup, Phys. Rev. Lett. 74, 1131 (1995)

    Article  Google Scholar 

  26. L. Torpo, T.E.M. Staab, R.M. Nieminen, Phys. Rev. B 65, 085202 (2002)

    Article  Google Scholar 

  27. M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa, S. Yoshida, J. Appl. Phys. 61, 599 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Colombo.

Additional information

Received: 9 January 2004, Published online: 28 May 2004

PACS:

61.72.Ji Point defects (vacancies, interstitials, color centers, etc.) and defect clusters - 68.55.Ln Defects and impurities: doping, implantation, distribution, concentration, etc. - 74.62.Dh Effects of crystal defects, doping and substitution

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardini, F., Mattoni, A. & Colombo, L. Energetics of native point defects in cubic silicon carbide. Eur. Phys. J. B 38, 437–444 (2004). https://doi.org/10.1140/epjb/e2004-00137-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00137-6

Keywords

Navigation