Skip to main content
Log in

Abstract.

We have used linear stability analysis to study the depinning of an elastic chain with long range interactions submitted to a random pinning potential. In this paper, we provide, for the first time, evidence of a pronounced change from a strong pinning regime to a weak pinning regime. This change depends on the strength of disorder, and takes place only in finite size systems. For a given disorder, we show a characteristic length separating the weak pinning regime from the strong pinning regime. This length depends on the long range of the algebraic decay of the elastic couplings. The weak pinning regime is very well described by perturbation theory. As an example, we discuss more specifically the case of wetting of heterogeneous surfaces, where the change from a strong to a weak pinning regime could be induced in the wetting front by varying the surface tension of the liquid-air interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Schmittbuhl, S. Roux, J.-P. Vilotte, K.J. Maloy, Phys. Rev. Lett. 74, 1787 (1995)

    Article  Google Scholar 

  2. E. Bouchaud, J. Phys.: Condens. Matter 9, 4319 (1997) For a large review, see Physical Aspects of Fracture, edited by E. Bouchaud et al. (NATO science study, September 2001)

    Article  Google Scholar 

  3. J.F. Joanny, P.G. de Gennes, J. Chem. Phys. 81, 552, (1984)

    Article  Google Scholar 

  4. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Google Scholar 

  5. Y. Pomeau, J. Vannimenus, J. Colloid Interface Sci. 104, 477 (1985)

    Google Scholar 

  6. J. Crassous, E. Charlaix, Europhys. Lett. 28, 415 (1994)

    Google Scholar 

  7. J.-M. di Meglio, Europhys. Lett. 17, 607 (1992)

    Google Scholar 

  8. S. Ramos, E. Charlaix, A. Benyagoub, M. Toulemonde, Phys. Rev. E 67, 031604 (2003)

    Article  Google Scholar 

  9. E. Rolley, C. Guthmann, R. Gombrowivz, V. Repain, Phys. Rev. Lett. 80, 2865 (1998)

    Article  Google Scholar 

  10. A. Prevost, E. Rolley, C. Guthmann, Phys. Rev. B 65, 064517 (2002)

    Article  Google Scholar 

  11. S. Moulinet, C. Guthmann, E. Rolley, Eur. Phys. J. E 8, 437 (2002)

    Google Scholar 

  12. T. Cubaud, Thèse de l’université Paris XI (2001); T. Cubaud, M. Fermigier, Europhys. Lett. 55, 239 (2001)

    Article  Google Scholar 

  13. J.F. Joanny, M.O. Robbins, J. Chem. Phys. 92, 3206 (1990); M.O. Robbins, J.F. Joanny, Europhys. Lett. 3, 729 (1987)

    Article  Google Scholar 

  14. R. Golestanian, E. Raphael, Phys. Rev. E 67, 031603 (2003)

    Article  Google Scholar 

  15. A. Rosso, W. Krauth, Phys. Rev. Lett. 87, 187002 (2001); A. Rosso, W. Krauth Phys. Rev. E 65, 025101(R) (2002); A. Rosso, A.K. Hartmann, W. Krauth, Phys. Rev. E 67, 021602 (2003); A. Rosso, W. Krauth, P. Le Doussal, J. Vannimenus, K.J. Wiese, cond-mat/0301464

    Article  Google Scholar 

  16. P. Le Doussal, K.J. Wiese, P. Chauve, Phys. Rev. B 66, 174201 (2002); P. Le Doussal, K.J. Wiese, Phys. Rev. E 67, 016121 (2003); P. Le Doussal, K.J. Wiese, cond-mat/0301465. P. Le Doussal, K.J. Wiese, P. Chauve, cond-mat/0304614

    Article  Google Scholar 

  17. T. Nattermann et al. , J. Phys. II France 2, 1483 (1992)

    Article  Google Scholar 

  18. D.S. Fisher, Phys. Rev. B 31, 1396 (1985)

    Article  Google Scholar 

  19. D. Ertas, M. Kardar, Phys. Rev. B 53, 3520 (1996)

    Article  Google Scholar 

  20. A. Hazareesing, M. Mézard, Phys. Rev. E 60, 1269 (1999)

    Article  Google Scholar 

  21. S. Zapperi, P. Ciseau, G. Durin, E. Stanley, Phys. Rev. B 58, 6353 (1998)

    Article  Google Scholar 

  22. A.I. Larkin, Y.N. Ovchinnikov, J. Low Temp. Phys. 34, 409, (1979); For a review, see T. Giamarchi, P. Le Doussal, in Spin Glasses and Random fields, edited by A.P. Young, (World Sci., Singapore,1997)

    Google Scholar 

  23. C. Caroli, P. Noziéres, in The physics of sliding friction, edited by B.N.J. Persson, Vol. 311 of NATO Advanced Study (Kluwer, Dordrecht, 1996)

  24. C. Caroli, P. Noziéres, Eur. Phys. J. B 4, 233 (1998)

    Article  Google Scholar 

  25. B.N.J. Persson, Sliding Friction (Physical Principles and Applications) (Springer-Verlag, Heidelberg, 1998)

  26. R. Burridge, L. Knopoff, Bull. Seismol. Soc. Am. 57, 341 (1967)

    Google Scholar 

  27. L. Bocquet, H.J. Jensen, J. Phys. I France 7, 1603 (1997)

    Article  Google Scholar 

  28. A. Tanguy, Thèse de l’université Paris VII (1998)

  29. S. Krishnamurthy, A. Tanguy, P. Abry, S. Roux, Europhys. Lett. 51, 1 (2000)

    Article  Google Scholar 

  30. S. Krishnamurthy, A. Tanguy, S. Roux, Eur. Phys. J. B 15, 149 (2000)

    Article  Google Scholar 

  31. A. Tanguy, M. Gounelle, S. Roux, Phys. Rev. E 58, 1577 (1998)

    Article  Google Scholar 

  32. L.-H. Tang et al. , Phys. Rev. Lett. 74, 920 (1995); M. Kardar, Phys. Rep. 301, 85 (1998); P. Le Doussal, K.J. Wiese, Phys. Rev. E 67, 016121 (2003)

    Article  Google Scholar 

  33. A. Paterson et al. , Phys. Rev. E 51, 1291 (1995) A. Paterson, M. Fermigier, Phys. Fluids 9, 2210 (1997)

    Article  Google Scholar 

  34. Let us recall that, in the context of this paper, temperature is zero. Thus an equilibrium position is simply one of the configurations of the contact line, where the sum of forces acting on the line, is equal to zero

  35. http://www.netlib.org/eispack

  36. http://www.caam.rice.edu/software/ARPACK/

  37. We have checked that this kind of distribution corresponds precisely to the distribution of pinning forces along the chain when it reaches its first equilibrium position: using conjugated gradient method, we have quenched very quickly a chain initially flat on a random surface. When the disorder on the surface, here the amplitude of the pinning centers, is decorrelated, the disorder along the chain at equilibrium is also decorrelated. The morphology of the line is not the same in the s trong or in the weak pinning regime. The roughness exponent of the chain at equilibrium in the weak pinning regime is \(\zeta =(2\alpha -3)/2\) as found already by Larkin et al. [22, 25]. A. Tanguy and T. Vettorel, in preparation (2003)

  38. J.M. Ziman Models of disorder (Cambridge university press, Cambridge, 1979)

  39. J.-M. Luck, Systèmes désordonnés unidimensionnels (Aléa Saclay, Gif-sur-Yvette, 1992)

  40. C. Cohen-Tannoudji, B. Diu, F. Laloë Mécanique Quantique, tome II (Hermann, Paris, 1973)

  41. E.M. Chudnovsky, R. Dickman, cond-mat/9710184

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tanguy.

Additional information

Received: 12 September 2003, Published online: 20 April 2004

PACS:

05.10.-a Computational methods in statistical physics and nonlinear dynamics - 68.08.Bc Wetting - 02.50.Fz Stochastic analysis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanguy, A., Vettorel, T. From weak to strong pinning I: A finite size study. Eur. Phys. J. B 38, 71–82 (2004). https://doi.org/10.1140/epjb/e2004-00101-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00101-6

Keywords

Navigation