Skip to main content
Log in

Microwave fluctuational conductivity in YBa\(\mathsf{_{2}}\)Cu\(\mathsf{_{3}}\)O \(\mathsf{_{7-\delta}}\)

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract

We present measurements of the microwave complex conductivity at 23.9 and 48.2 GHz in YBa2Cu3O\(_{7-\delta}\) films, in the fluctuational region above T c . With increasing temperature, the fluctuational excess conductivity drops much faster than the well-known calculations within the time-dependent Ginzburg-Landau theory [H. Schmidt, Z. Phys. 216, 336 (1968)]. Approaching the transition temperature, slowing down of the fluctuations is observed. We discuss the results in terms of a modified Gaussian theory for finite-frequency fluctuational conductivity, where renormalization is introduced in order to account for the \(T\rightarrow T_{c}\) regime, and a spectral cutoff is inserted in order to discard high-momentum modes. The data are in excellent agreement with the modified theory, when formulated for three-dimensional, anisotropic superconductors, in the whole experimentally accessible temperature range, and for both frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.J. Lobb, Phys. Rev. B 36, 3930 (1987)

    Article  ADS  Google Scholar 

  2. W.J. Skocpol, M. Tinkham, Rep. Prog. Phys. 38, 1049 (1975)

    Article  ADS  Google Scholar 

  3. P.P. Freitas, C.C. Tsuei, T.S. Plaskett, Phys. Rev. B 36, 833 (1987)

    Article  ADS  Google Scholar 

  4. M. Ausloos, Ch. Laurent, Phys. Rev. B 37, 611 (1988)

    Article  ADS  Google Scholar 

  5. R. Hopfengartner, B. Hensel, G. Saemann-Ischenko, Phys. Rev. B 44, 741 (1991)

    Article  ADS  Google Scholar 

  6. G. Balestrino, M. Marinelli, E. Milani, Phys. Rev. B 46, 14919 (1992)

    Article  ADS  Google Scholar 

  7. S. Labdi, S. Megtert, H. Raffy, Solid State Commun. 85, 491 (1993)

    Article  ADS  Google Scholar 

  8. V. Calzona, M.R. Cimberle, C. Ferdeghini, G. Grasso, D.V. Livanov, D. Marré, M. Putti, A.S. Siri, G. Balestrino, E. Milani, Solid State Commun. 87, 397 (1993)

    Article  ADS  Google Scholar 

  9. A. Gauzzi, D. Pavuna, Phys. Rev. B 51, 15420 (1995)

    Article  ADS  Google Scholar 

  10. M.R. Cimberle, C. Federghini, E. Giannini, D. Marré, M. Putti, A. Siri, F. Federici, A. Varlamov, Phys. Rev. B 55, R14745 (1997)

  11. E. Silva, D. Neri, M. Esposito, R. Fastampa, M. Giura, S. Sarti, Physica C 341-348, 1927 (2000)

  12. C. Carballeira, S.R. Currás, J. Vina, J.A. Veira, M.V. Ramallo, F. Vidal, Phys. Rev. B 63, 144515 (2001)

    Article  ADS  Google Scholar 

  13. E. Silva, S. Sarti, R. Fastampa, M. Giura, Phys. Rev. B 64, 144508 (2001)

    Article  ADS  Google Scholar 

  14. R.V. D’Aiello, S.J. Freedman, Phys. Rev. Lett. 22, 515 (1969); S.L. Lehoczky, C.V. Briscoe, Phys. Rev. Lett. 23, 695 (1969); S.L. Lehoczky, C.V. Briscoe, Phys. Rev. B 4, 3938 (1971)

    Article  ADS  Google Scholar 

  15. S.M. Anlage, J. Mao, J.C. Booth, D.H. Wu, J.L. Peng, Phys. Rev. B 53, 2792 (1996)

    Article  ADS  Google Scholar 

  16. J.C. Booth, D.H. Wu, S.B. Qadri, E.F. Skelton, M.S. Osofsky, A. Piqué, S.M. Anlage, Phys. Rev. Lett. 77, 4438 (1996)

    Article  ADS  Google Scholar 

  17. D. Neri, E. Silva, S. Sarti, R. Marcon, M. Giura, R. Fastampa, N. Sparvieri, Phys. Rev. B 58, 14581 (1998)

    Article  ADS  Google Scholar 

  18. J.R. Waldram, D.M. Broun, D.C. Morgan, R. Ormeno, A. Porch, Phys. Rev. B 59, 1528 (1999)

    Article  ADS  Google Scholar 

  19. D. Neri, R. Marcon, E. Silva, R. Fastampa, L. Iacobucci, S. Sarti, Int. J. Mod. Phys. B 13, 1097 (1999)

    Article  ADS  Google Scholar 

  20. D. Neri, R. Fastampa, M. Giura, R. Marcon, S. Sarti, E. Silva, J. Low Temp. Phys. 117, 1099 (1999)

    Article  ADS  Google Scholar 

  21. H. Schmidt, Z. Phys. 216, 336 (1968); H. Schmidt, Z. Phys. 232, 443 (1970)

    Article  ADS  Google Scholar 

  22. W.L. Johnson, C.C. Tsuei, Phys. Rev. B 13, 4827 (1976); W.L. Johnson, C.C. Tsuei, P. Chaudhari, Phys. Rev. B 17, 2884 (1978)

    Article  ADS  Google Scholar 

  23. Yu.N. Ovchinnikov, S.A. Wolf, V.Z. Kresin, Phys. Rev. B 60, 4329 (1999); Yu.N. Ovchinnikov, S.A. Wolf, V.Z. Kresin, Phys. Rev. B 63, 064524 (2001); Yu.N. Ovchinnikov, V.Z. Kresin, Phys. Rev. B 65, 214507 (2002)

    Article  ADS  Google Scholar 

  24. D. Mihailovic, T. Mertelj, K.A. Muller, Phys. Rev. B 57, 6116 (1998)

    Article  ADS  Google Scholar 

  25. S. Chakravarty, R.B. Laughlin, D.K. Morr, C. Nayak, Phys. Rev. B 63, 094503 (2001)

    Article  ADS  Google Scholar 

  26. E. Silva, Eur. Phys. J. B 27, 497 (2002)

    Article  ADS  Google Scholar 

  27. A.T. Dorsey, Phys. Rev. B 43, 7575 (1991)

    Article  ADS  Google Scholar 

  28. R. Fastampa, M. Giura, R. Marcon, E. Silva, Meas. Sci. Technol. 1, 1172 (1990)

    Article  ADS  Google Scholar 

  29. E. Silva, A. Lezzerini, M. Lanucara, S. Sarti, R. Marcon, Meas. Sci. Technol. 9, 275 (1998)

    Article  ADS  Google Scholar 

  30. E. Silva, in Superconducting Materials: Advances in Technology and Applications, edited by A. Tampieri, G. Celotti (World Scientific, 2000), pp. 279-306

  31. D. Neri, Ph.D. thesis, Universitá di Roma Tre (2000) (unpublished)

  32. C. Beneduce, F. Bobba, M. Boffa, A.M. Cucolo, M.C. Cucolo, A. Andreone, C. Aruta, M. Iavarone, F. Palomba, G. Pica, M. Salluzzo, R. Vaglio, Int. J. Mod. Phys. B 13, 1333 (1999)

    Article  ADS  Google Scholar 

  33. D. Neri, R. Marcon, R. Rogai, E. Silva, R. Fastampa, M. Giura, S. Sarti, A.M. Cucolo, C. Beneduce, F. Bobba, M. Boffa, M.C. Cucolo, Physica C 341-348, 2679 (2000)

  34. E. Silva, M. Lanucara, R. Marcon, Supercond. Sci. Technol. 9, 934 (1996)

    Article  ADS  Google Scholar 

  35. C. Kusko, Z. Zhai, R.S. Markiewicz, S. Sridhar, D. Colson, V. Viallet-Guillen, A. Forget, Yu.A. Nefyodov, M.R. Trunin, N.N. Kolesnikov, A. Maignan, A. Daignere, A. Erb, Phys. Rev. B 65, 132501 (2002)

    Article  ADS  Google Scholar 

  36. A.A. Varlamov, G. Balestrino, E. Milani, D.V. Livanov, Adv. Phys. 48, 655 (1999)

    Article  ADS  Google Scholar 

  37. T. Mishonov, E. Penev, Int. J. Mod. Phys B. 14, 3831 (2000)

    Article  ADS  MATH  Google Scholar 

  38. In fact, it has been recently shown that several results in the calculation of the excess conductivity can be derived by the Boltzmann kinetic equation: see T. Mishonov, A. Posazhennikova, J. Indekeu, Phys. Rev. B 65, 064519 (2002); T.M. Mishonov, G.V. Pachov, L.A. Atanasova, D.Ch. Damianov, Phys. Rev. B 68, 054525 (2003) and cond-mat/0302046

    Article  Google Scholar 

  39. I. Puica, W. Lang, Phys. Rev. B 68, 054517 (2003)

    Article  ADS  Google Scholar 

  40. L.P. Gor’kov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959) [Soviet Phys. JETP 9, 1364 (1959)]

    Google Scholar 

  41. A. Gauzzi, Europhys. Lett. 21, 207 (1993)

    Article  ADS  Google Scholar 

  42. For the sake of compactness, throughout the paper we use only the GL zero-temperature coherence length, \(\xi(0)\), instead of the microscopic coherence length \(\xi_{0}=\xi(0)/0.74\). As a consequence, the cutoff \(\Lambda\)=0.74 means a momentum cutoff \(Q=\xi_{0}^{-1}\). We also note that our choice of the cutoff would correspond to a kinetic energy cutoff

  43. L.D. Landau, E.M. Lifshitz, Statistical Physics, Italian edition: Fisica Statistica (Editori Riuniti, Roma, 1977), Chap. XIV

  44. N.R. Werthamer, in Superconductivity, edited by R.D. Parks (Marcel Dekker, New York, 1969), p. 321-370

  45. L. Reggiani, R. Vaglio, A.A. Varlamov, Phys. Rev. B 44, 9541 (1991)

    Article  ADS  Google Scholar 

  46. J. Mosqueira, C. Carballeira, F. Vidal, Phys. Rev. Lett. 87, 167009 (2001)

    Article  ADS  Google Scholar 

  47. We recall that \(\xi_{c0}\) acts as a scale factor. All the errors in the proportionality factors in the conversion between the quality factor and the resonance shift to the complex conductivity are absorbed into \(\xi_{c0}\)

  48. G. Nakielski, D. Gorlitz, Chr. Stodte, M. Welters, A. Kramer, J. Kotzler, Phys. Rev. B 55, 6077 (1997).

    Article  ADS  Google Scholar 

  49. M.V. Ramallo, C. Carballeira, J. Vina, J.A. Veira, T. Mishonov, D. Pavuna, F. Vidal, Europhys. Lett. 48, 79 (1999). See also reference [37]

    Article  ADS  Google Scholar 

  50. D.-N. Peligrad, M. Mehring, A. Dulcic, Phys. Rev. B 67, 174515 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Silva.

Additional information

Received: 23 December 2003, Published online: 2 April 2004

PACS:

74.25.Nf Response to electromagnetic fields (nuclear magnetic resonance, surface impedance, etc.) - 74.40. + k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) - 74.72.Bk Y-based cuprates

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, E., Marcon, R., Sarti, S. et al. Microwave fluctuational conductivity in YBa\(\mathsf{_{2}}\)Cu\(\mathsf{_{3}}\)O \(\mathsf{_{7-\delta}}\) . Eur. Phys. J. B 37, 277–284 (2004). https://doi.org/10.1140/epjb/e2004-00057-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00057-5

Keywords

Navigation