Skip to main content
Log in

Abstract

In the dissipative, driven standard Frenkel-Kontorova model propagating breathers exist as attractors of the dynamics. In collisions, these excitations interact through the phonons they emit. A possible result of a two-breather collision is a bound state of two breathers. After looking at phonons and breather collisions, we present phenomenological results on breather bound states obtained from lattice dynamics simulations. In particular, we find that bound states can be characterised by the distance between the two breathers they comprise and their propagation velocity. Contrary to the single breather case, several values of the propagation velocity are easily accessible to bound states at fixed model parameters. The results are interpreted on the basis of the observed phonon spectra. The latter can easily be explained as Doppler-shifted combination frequencies of breather harmonics and a discreteness-induced perturbation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Bishop, J.A. Krumhansl, S.E. Trullinger, Physica D 1, 1 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Camassa, J.M. Hyman, B.P. Luce, Physica D 123, 1 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A.J. Sievers, S. Takeno, Phys. Rev. Lett. 61, 970 (1988)

    Article  ADS  Google Scholar 

  4. S. Takeno, A.J. Sievers, Solid State Commun. 67, 1023 (1988)

    Article  ADS  Google Scholar 

  5. S. Takeno, K. Kisoda, A.J. Sievers, Prog. Theor. Phys. Suppl. 94, 242 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  6. R.S. MacKay, S. Aubry, Nonlinearity 7, 1623 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S. Aubry, Physica D 103, 201 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J.-A. Sepulchre, R.S. MacKay, Nonlinearity 10, 679 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. D. Bambusi, Nonlinearity 9, 433 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. R.S. MacKay, J.-A. Sepulchre, Physica D 119, 148 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J.L. Marín, S. Aubry, L.M. Floría, Physica D 113, 283 (1998)

    Article  ADS  MATH  Google Scholar 

  12. J.L. Marín, S. Aubry, Physica D 119, 163 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A.M. Morgante et al. , J. Phys. A: Math. Gen. 35, 4999 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. S. Takeno, K. Hori, J. Phys. Soc. Jpn 59, 3037 (1990)

    Article  ADS  Google Scholar 

  15. S. Takeno, K. Hori, J. Phys. Soc. Jpn 60, 947 (1991)

    Article  ADS  Google Scholar 

  16. K. Hori, S. Takeno, J. Phys. Soc. Jpn 61, 2186 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  17. K. Hori, S. Takeno, J. Phys. Soc. Jpn 61, 4263 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  18. D. Chen, S. Aubry, G.P. Tsironis, Phys. Rev. Lett. 77, 4776 (1996)

    Article  ADS  Google Scholar 

  19. J.L. Marín et al. , Phys. Rev. E 63, 066603 (2001)

    Article  ADS  Google Scholar 

  20. S. Flach, K. Kladko, Physica D 127, 61 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S. Flach, Y. Zolotaryuk, K. Kladko, Phys. Rev. E 59, 6105 (1999)

    Article  ADS  Google Scholar 

  22. S. Aubry, T. Cretegny, Physica D 119, 34 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. S. Flach, C.R. Willis, Phys. Rev. Lett. 72, 1777 (1994)

    Article  ADS  Google Scholar 

  24. J.L. Marín, S. Aubry, Nonlinearity 9, 1501 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. S.V. Dmitriev, Yu.S. Kivshar, T. Shigenari, Phys. Rev. E 64, 056613 (2001)

    Article  ADS  Google Scholar 

  26. S.V. Dmitriev et al. , Phys. Rev. E 68, 056603 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  27. I.E. Papacharalampous et al. , Phys. Rev. E 68, 046604 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  28. A.V. Ustinov, B.A. Malomed, S. Sakai, Phys. Rev. B 57, 11691 (1998)

    Article  ADS  Google Scholar 

  29. S. Flach, M. Spicci, J. Phys. Cond. Mat. 11, 321 (1999)

    Article  ADS  Google Scholar 

  30. M. Peyrard, D.K. Campbell, Physica D 9, 33 (1983)

    Article  ADS  Google Scholar 

  31. K.A. Gorshkov, A.S. Lomov, M.I. Rabinovich, Nonlinearity 5, 1343 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. J. Yang, Y. Tan, Phys. Rev. Lett. 85, 3624 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meister.

Additional information

Received: 18 December 2003, Published online: 15 March 2004

PACS:

63.20.Ry Anharmonic lattice modes - 63.20.Pw Localized modes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meister, M., Floría, L.M. Bound states of breathers in the Frenkel-Kontorova model. Eur. Phys. J. B 37, 213–221 (2004). https://doi.org/10.1140/epjb/e2004-00049-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00049-5

Keywords

Navigation