Skip to main content
Log in

Scaling of fracture strength in disordered quasi-brittle materials

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract

This paper presents two main results. The first result indicates that in materials with broadly distributed microscopic heterogeneities, the fracture strength distribution corresponding to the peak load of the material response does not follow the commonly used Weibull and (modified) Gumbel distributions. Instead, a lognormal distribution describes more adequately the fracture strengths corresponding to the peak load of the response. Lognormal distribution arises naturally as a consequence of multiplicative nature of large number of random distributions representing the stress scale factors necessary to break the subsequent “primary” bond (by definition, an increase in applied stress is required to break a “primary” bond) leading up to the peak load. Numerical simulations based on two-dimensional triangular and diamond lattice topologies with increasing system sizes substantiate that a lognormal distribution represents an excellent fit for the fracture strength distribution at the peak load. The second significant result of the present study is that, in materials with broadly distributed microscopic heterogeneities, the mean fracturestrength of the lattice system behaves as \(\mu _f = \tfrac{{\mu _{_f }^* }} {{(LogL)^\psi }} + \tfrac{c} {L}\), and scales as \(\mu _f \approx \tfrac{1} {{(LogL)^\psi }}\) as the latticesystem size, L, approaches infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brian Lawn, Fracture of Brittle Solids (Cambridge Solid State Science Series, 1993)

  2. H. Peterlik, D. Loidl, Engineering Fracture Mechanics 68, 253 (2001)

    Article  Google Scholar 

  3. J.D. Poloniecki, T.R. Wilshaw, Nature 229, 226 (1971)

    ADS  Google Scholar 

  4. A.S. Jayatilaka, K. Trustrum, J. Mater. Sci. 12, 1426 (1977)

    Article  ADS  Google Scholar 

  5. L.S. Sigl, Zeitschrift für Metallkunde 83, 518 (1992)

    Google Scholar 

  6. N. Lissart, J. Lamon, J. Mater. Sci. 32, 6107 (1997)

    Article  ADS  Google Scholar 

  7. T. Helmer, H. Peterlik, K. Kromp, J. American Ceramic Soc. 78, 133 (1995)

    Article  Google Scholar 

  8. N. Orlovskaja, H. Peterlik, M. Marczewski, K. Kromp, J. Mater. Sci. 32, 1903 (1997)

    Article  ADS  Google Scholar 

  9. L.Y. Chao, D.K. Shetty, J. American Ceramic Soc. 75, 2116 (1992)

    Article  Google Scholar 

  10. N. Orlovskaja, H. Peterlik, W. Steinkellner, K. Kromp, J. Mater. Sci. 35, 699 (2000)

    Article  ADS  Google Scholar 

  11. H. Peterlik, N. Orlovskaja, W. Steinkellner, K. Kromp, J. Mater. Sci. 35, 707 (2000)

    Article  ADS  Google Scholar 

  12. Y. Zhang, N. Uchida, K. Uematsu, T. Hotta, K. Nakahira, M. Naito, Key Engineering Mater. 159, 269 (1999)

    Article  Google Scholar 

  13. M. Sahimi, S. Arbabi, Phys. Rev. B 47, 713 (1993)

    Article  ADS  Google Scholar 

  14. A. Hansen, S. Roux, Statistical toolbox for damage and fracture (Springer, New York, 2000), p. 17-101

  15. Statistical Models for the Fracture of Disordered Media, edited by H.J. Herrmann, S. Roux (North-Holland, Amsterdam, 1990)

  16. M. Sahimi, Phys. Rep. 306, 213 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  17. B.K. Chakrabarti, L. Gilles Benguigui, Statistical Physics of Fracture and Breakdown in Disordered Systems (Oxford Science Publications, Oxford, 1997)

  18. P.M. Duxbury, P.D. Beale, P.L. Leath, Phys. Rev. Lett. 57, 1052 (1986)

    Article  ADS  Google Scholar 

  19. P.M. Duxbury, P.L. Leath, P.D. Beale, Phys. Rev. B 36, 367 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  20. P.D. Beale, P.M. Duxbury, Phys. Rev. B 37, 2785 (1988)

    Article  ADS  Google Scholar 

  21. L. de Arcangelis, H.J. Herrmann, Phys. Rev. B 39, 2678 (1988)

    Article  Google Scholar 

  22. B. Kahng, G.G. Batrouni, S. Redner, L. de Arcangelis, H.J. Herrmann, Phys. Rev. B 37, 7625 (1988)

    Article  ADS  Google Scholar 

  23. S. Roux, A. Hansen, E.L. Hinrichsen, D. Sornette, J. Phys. A 24, 1625 (1991)

    Article  ADS  Google Scholar 

  24. L. de Arcangelis, S. Redner, H.J. Herrmann, J. Phys. Lett. France 46, 585 (1985)

    Article  Google Scholar 

  25. M. Sahimi, J.D. Goddard, Phys. Rev. B 33, 7848 (1986)

    Article  ADS  Google Scholar 

  26. P.D. Beale, D.J. Srolovitz, Phys. Rev. B 37, 5500 (1988)

    Article  ADS  Google Scholar 

  27. S. Feng, P.N. Sen, Phys. Rev. Lett. 52, 216 (1984)

    Article  ADS  Google Scholar 

  28. A. Hansen, S. Roux, Phys. Rev. B 40, 749 (1989)

    Article  ADS  Google Scholar 

  29. A. Hansen, S. Roux, H.J. Herrmann, J. Phys. France 50, 733 (1989)

    Article  Google Scholar 

  30. S. Arbabi, M. Sahimi, Phys. Rev. B 47, 695 (1993)

    Article  ADS  Google Scholar 

  31. Y. Kantor, I. Webman, Phys. Rev. Lett. 52, 1891 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Sahimi, S. Arbabi, Phys. Rev. B 47, 703 (1993)

    Article  ADS  Google Scholar 

  33. H.J. Herrmann, A. Hansen, S. Roux, Phys. Rev. B 39, 637 (1989)

    Article  ADS  Google Scholar 

  34. A. Delaplace, G. Pijaudier-Cabot, S. Roux, J. Mech. Phys. Solids 44, 99 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. L. de Arcangelis, A. Hansen, H.J. Herrmann, S. Roux, Phys. Rev. B 40, 877 (1989)

    Article  ADS  Google Scholar 

  36. Kin Wah Yu, P.M. Chaikin, R. Orbach, Phys. Rev. B 28, 4831 (1983)

    Article  ADS  Google Scholar 

  37. P.K.V.V. Nukala, S. Simunovic, J. Phys. A 36, 11403 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. G.G. Batrouni, A. Hansen, J. Stat. Phys. 52, 747 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. G.G. Batrouni, A. Hansen, Phys. Rev. Lett. 80, 325 (1998)

    Article  ADS  Google Scholar 

  40. W. Weibull, J. Appl. Mech. 18, 293 (1951)

    MATH  Google Scholar 

  41. G.N. Hassold, D.J. Srolovitz, Phys. Rev. B 39, 9273 (1989)

    Article  ADS  Google Scholar 

  42. L.C. Wolstenholme, Commun. Statistics-Simulation Computation 25, 119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. S.H. Own, R.V. Subramanian, S.C. Saunders, J. Mater. Sci. 21, 3912 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. V. V. Nukala.

Additional information

Received: 4 August 2003, Published online: 19 February 2004

PACS:

62.20.Mk Fatigue, brittleness, fracture, and cracks - 46.50. + a Fracture mechanics, fatigue and cracks

The submitted manuscript has been authored by a contractor of the US Government under Contract No. DE-AC05-00OR22725. Accordingly, the US Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nukala, P.K.V.V., Simunovic, S. Scaling of fracture strength in disordered quasi-brittle materials. Eur. Phys. J. B 37, 91–100 (2004). https://doi.org/10.1140/epjb/e2004-00033-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00033-1

Keywords

Navigation