Skip to main content
Log in

Selection rules and superconducting correlations in carbon nanotubes

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We carry out a detailed analysis of the effective interaction arising from electron-phonon scattering and its capability to produce the superconducting correlations observed in the carbon nanotubes. It is shown that certain selection rules prevent the exchange of phonons in some of the interaction channels, depending on the geometry of the nanotubes and on whether they are doped or not. In addition, we discuss the mechanism working in nanotube ropes by which the electrostatic coupling among a large number of metallic nanotubes leads to a substantial reduction in the strength of the Coulomb interaction. The scaling equation for the superconducting response function is then improved nonperturbatively, by including the exact contribution from forward-scattering processes. This allows us to estimate the boundary between superconducting and nonsuperconducting phases in the ropes, as well as to constrain the actual values of the strength of the effective attractive interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992)

    Article  Google Scholar 

  2. J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992)

    Article  Google Scholar 

  3. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  Google Scholar 

  4. R. Egger, A.O. Gogolin, Phys. Rev. Lett. 79, 5082 (1997)

    Article  Google Scholar 

  5. C. Kane, L. Balents, M.P.A. Fisher, Phys. Rev. Lett. 79, 5086 (1997)

    Article  Google Scholar 

  6. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Nature 397, 598 (1999)

    Article  Google Scholar 

  7. Z. Yao, H.W. Ch. Postma, L. Balents, C. Dekker, Nature 402, 273 (1999)

    Article  Google Scholar 

  8. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Science 275, 1922 (1997)

    Article  Google Scholar 

  9. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386, 474 (1997)

    Article  Google Scholar 

  10. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Science 280, 1744 (1998)

    Article  Google Scholar 

  11. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park, Nature 411, 665 (2001)

    Article  Google Scholar 

  12. A.Yu. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, C. Journet, M. Burghard, Science 284, 1508 (1999)

    Article  Google Scholar 

  13. A.Yu. Kasumov, M. Kociak, M. Ferrier, R. Deblock, S. Guéron, B. Reulet, I.I. Khodos, O. Stéphan, H. Bouchiat, report cond-mat/0307260, to be published in Phys. Rev. B

  14. M. Kociak, A.Yu. Kasumov, S. Guéron, B. Reulet, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, L. Vaccarini, H. Bouchiat, Phys. Rev. Lett. 86, 2416 (2001)

    Article  Google Scholar 

  15. Z.K. Tang, L. Zhang, N. Wang, X.X. Zhang, G.H. Wen, G.D. Li, J.N. Wang, C.T. Chan, P. Sheng, Science 292, 2462 (2001)

    Article  Google Scholar 

  16. J. González, Phys. Rev. Lett. 87, 136401 (2001)

    Article  Google Scholar 

  17. J. González, Phys. Rev. Lett. 88, 076403 (2002)

    Article  Google Scholar 

  18. J. González, Phys. Rev. B 67, 014528 (2003)

    Article  Google Scholar 

  19. L.G. Caron, C. Bourbonnais, Phys. Rev. B 29, 4230 (1984)

    Article  Google Scholar 

  20. H. Suzuura, T. Ando, Phys. Rev. B 65, 235412 (2002).

    Article  Google Scholar 

  21. D. Loss, T. Martin, Phys. Rev. B 50, 12160 (1994)

    Article  Google Scholar 

  22. A. De Martino, R. Egger, Phys. Rev. B 67, 235418 (2003)

    Article  Google Scholar 

  23. D. Sánchez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejón, Phys. Rev. B 59, 12678 (1999)

    Article  Google Scholar 

  24. L.M. Woods, G.D. Mahan, Phys. Rev. B 61, 10651 (2000)

    Article  Google Scholar 

  25. R. Saito, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 88, 027401 (2002)

    Article  Google Scholar 

  26. J. González, F. Guinea, M.A.H. Vozmediano, Nucl. Phys. B 406, 771 (1993)

    Article  MathSciNet  Google Scholar 

  27. L. Pietronero, S. Strässler, H.R. Zeller, M.J. Rice, Phys. Rev. B 22, 904 (1980)

    Article  Google Scholar 

  28. R.A. Jishi, M.S. Dresselhaus, G. Dresselhaus, Phys. Rev. B 48, 11385 (1993)

    Article  Google Scholar 

  29. D.W. Wang, A.J. Millis, S. Das Sarma, Phys. Rev. B 64, 193 307 (2001)

    Google Scholar 

  30. R. Egger, H. Grabert, Phys. Rev. Lett. 79, 3463 (1997)

    Article  Google Scholar 

  31. S. Bellucci, J. González, Eur. Phys. J. B 18, 3 (2000)

    Article  Google Scholar 

  32. A.A. Maarouf, C.L. Kane, E.J. Mele, Phys. Rev. B 61, 11156 (2000)

    Article  Google Scholar 

  33. H. Stahl, J. Appenzeller, R. Martel, Ph. Avouris, B. Lengeler, Phys. Rev. Lett. 85, 5186 (2000)

    Article  Google Scholar 

  34. J. Sólyom, Adv. Phys. 28, 201 (1979)

    Google Scholar 

  35. H.J. Schulz, in Correlated Electron Systems, Vol. 9, edited by V.J. Emery (World Scientific, Singapore, 1993)

  36. Yu.A. Krotov, D.-H. Lee, S.G. Louie, Phys. Rev. Lett. 78, 4245 (1997)

    Article  Google Scholar 

  37. J.V. Alvarez, J. González, Phys. Rev. Lett. 91, 076401 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. González.

Additional information

Received: 13 August 2003, Published online: 23 December 2003

PACS:

71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) - 73.63.Fg Nanotubes - 74.78.Na Mesoscopic and nanoscale systems

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, J. Selection rules and superconducting correlations in carbon nanotubes. Eur. Phys. J. B 36, 317–326 (2003). https://doi.org/10.1140/epjb/e2003-00350-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00350-9

Keywords

Navigation