Skip to main content
Log in

Pycnonuclear reactions in dense stellar matter

  • ENAM 2004
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

We discuss pycnonuclear burning of highly exotic atomic nuclei in deep crusts of neutron stars, at densities up to 1013 g cm-3. As an application, we consider pycnonuclear burning of matter accreted on a neutron star in a soft X-ray transient (SXT, a compact binary containing a neutron star and a low-mass companion). The energy released in this burning, while the matter sinks into the stellar crust under the weight of newly accreted material, is sufficient to warm up the star and initiate neutrino emission in its core. The surface thermal radiation of the star in quiescent states becomes dependent on the poorly known equation of state (EOS) of supranuclear matter in the stellar core, which gives a method to explore this EOS. Four qualitatively different model EOSs are tested against observations of SXTs. They imply different levels of the enhancement of neutrino emission in massive neutron stars by 1) the direct Urca process in nucleon/hyperon matter; 2) pion condensates; 3) kaon condensates; 4) Cooper pairing of neutrons in nucleon matter with the forbidden direct Urca process. A low level of the thermal quiescent emission of two SXTs, SAX J1808.4-3658 and Cen X-4, contradicts model 4). Observations of SXTs test the same physics of dense matter as observations of thermal radiation from cooling isolated neutron stars, but the data on SXTs are currently more conclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001).

    Article  Google Scholar 

  2. P. Haensel, in Final Stages of Stellar Evolution, edited by C. Motch, J.-M. Hameury, EAS Publ. Ser. (EDP Sciences, 2003) p. 249.

  3. U. Lombardo, H.-J. Schulze, in Physics of Neutron Star Interiors, edited by D. Blaschke, N.K. Glendenning, A. Sedrakian (Springer, Berlin, 2001) p. 30.

  4. D.G. Yakovlev, C.J. Pethick, Annu. Rev. Astron. Astrophys. 42, 169 (2004).

    Article  Google Scholar 

  5. D. Page, J.M. Lattimer, M. Prakash, A.W. Steiner, Astrophys. J. Suppl. Ser. 155, 623 (2004).

    Article  Google Scholar 

  6. M.E. Gusakov, A.D. Kaminker, D.G. Yakovlev, O.Y. Gnedin, Astron. Astrophys. 423, 1063 (2004).

    Article  Google Scholar 

  7. D.G. Yakovlev, O.Y. Gnedin, M.E. Gusakov, A.D. Kaminker, K.P. Levenfish, A.Y. Potekhin, in Proceedings of the International Nuclear Physics Conference, Göteborg, Sweden, June 27--July 2, 2004, Nucl. Phys. A 752, 590c (2005), astro-ph/0409751.

    Google Scholar 

  8. G. Gamow, Phys. Rev. 55, 718 (1939).

    Article  Google Scholar 

  9. W.A. Wildhack, Phys. Rev. 57, 81 (1940).

    Article  Google Scholar 

  10. E.E. Salpeter, H.M. van Horn, Astrophys. J. 155, 183 (1969).

    Article  Google Scholar 

  11. S. Schramm, S.E. Koonin, Astrophys. J. 365, 296 (1990)

    Article  Google Scholar 

  12. H. Kitamura, Astrophys. J. 539, 888 (2000).

    Article  Google Scholar 

  13. P. Haensel, J.L. Zdunik, Astron. Astrophys. 227, 431 (1990).

    Google Scholar 

  14. P. Haensel, J.L. Zdunik, Astron. Astrophys. 404, L33 (2003).

  15. W. Chen, C.R. Shrader, M. Livio, Astrophys. J. 491, 312 (1997).

    Article  Google Scholar 

  16. E.F. Brown, L. Bildsten, R.E. Rutledge, Astrophys. J. Lett. 504, L95 (1998).

  17. G. Ushomirsky, R.E. Rutledge, Mon. Not. R. Astron. Soc. 325, 1157 (2001).

    Article  Google Scholar 

  18. M. Colpi, U. Geppert, D. Page, A. Possenti, Astrophys. J. Lett. 548, L175 (2001).

  19. R.E. Rutledge, L. Bildsten, E.F. Brown, G.G. Pavlov, V.E. Zavlin, G. Ushomirsky, Astrophys. J. 580, 413 (2002).

    Article  Google Scholar 

  20. E.F. Brown, L. Bildsten, P. Chang, Astrophys. J. 574, 920 (2002).

    Article  Google Scholar 

  21. D.G. Yakovlev, K.P. Levenfish, P. Haensel, Astron. Astrophys. 407, 265 (2003).

    Article  Google Scholar 

  22. M. Prakash, T.L. Ainsworth, J.M. Lattimer, Phys. Rev. Lett. 61, 2518 (1988).

    Article  PubMed  Google Scholar 

  23. F. Douchin, P. Haensel, Astron. Astrophys. 380, 151 (2001).

    Article  Google Scholar 

  24. S. Campana, L. Stella, F. Gastaldello, S. Mereghetti, M. Colpi, G.L. Israel, L. Burderi, T. Di Salvo, R.N. Robba, Astrophys. J. Lett. 575, L15 (2002).

    Google Scholar 

  25. D.G. Yakovlev, K.P. Levenfish, A.Y. Potekhin, O.Y. Gnedin, G. Chabrier, Astron. Astrophys. 417, 169 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Yakovlev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlev, D.G., Levenfish, K.P. & Gnedin, O.Y. Pycnonuclear reactions in dense stellar matter. Eur. Phys. J. A 25 (Suppl 1), 669–672 (2005). https://doi.org/10.1140/epjad/i2005-06-093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjad/i2005-06-093-1

PACS.

Navigation