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Abstract The kink in the nuclear charge radii of lead iso-
topes is studied in the relativistic mean field approxima-
tion framework, using the parameter set NL3∗. Within this
approach, it is shown that the small component of the single-
particle Dirac spinors plays an essential role in the kink for-
mation through its effects on the single-particle central poten-
tial. This is because the structure of this potential in terms
of the σ -scalar and ω-vector fields and the contributions of
the small component to the scalar and nucleon densities have
opposite signs. The impact of the spin-orbit interaction of
the valence neutrons on the kink, through its effects on their
wave functions, is very small for 1i states but significant for
2g states. Due to relativistic contributions, the effects on the
kink of neutrons in the valence levels of a spin-orbit doublet
with j = l + 1/2 and j = l − 1/2 are rather different from
each other, even in the limit case of neglecting their spin-orbit
interaction.

1 Introduction

The nuclear root-mean-square (rms) charge radius is one
of the most important macroscopic magnitudes of atomic
nuclei. In an appropriate nuclear model, it depends on the
nucleon-nucleon interaction, the equation of state of nuclear
matter and the characteristics of the model. Consequently,
for confidence in the model’s reliability, a reasonable pre-
diction of this magnitude is required. Traditionally, the rms
has been measured through electron scattering. Currently,
laser spectroscopy makes it possible to measure slight differ-
ences between the radii of two members of an isotopic family
with a high degree of precision [1], which is impossible via
electron scattering. This fact increases the relevance of the
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mean-square charge radii (r2
c ) differences within an isotopic

family.
For many years, it has been recognised that in certain

isotopic chains, a pronounced shift in the behaviour of the
nuclear charge radii occurs as the number of neutrons crosses
a specific value. The most typical example of this abrupt
change occurs in the charge radii of Pb isotopes [2]. It
appears when the neutron number (N ) becomes greater than
N = 126 and is generally known as kink or kink effect
(KE). This kink is faithfully replicated by the nuclear rela-
tivistic mean-field approximation (RMFA) [2–7], while non-
relativistic Skyrme-Hartree-Fock (SHF) models with stan-
dard parametrisations fail to reproduce it [8]. Nevertheless,
the RMFA have problems reproducing the kink in the Sn
family at N = 82 [7,9].

The reason why the relativistic and non-relativistic mean-
field models provide different results for the kink has been
discussed in several studies. Thus, in Ref. [10], it is con-
tended that the inability of standard Skyrme interactions to
account for the kink is attributed to the somewhat large spin-
orbit interaction resulting from the isospin dependence of
the Skyrme functionals. In the family of Pb isotopes, the
spin-orbit interaction influences the relative positioning of
the neutron 2g9/2 and 1i11/2 energy levels. This indirectly
affects the occupancy of these levels and significantly deter-
mines the proton density for N > 126. While in typical SHF
functionals, the energy of the 2g9/2 level usually falls signifi-
cantly below that of the 1i11/2 level (in qualitative agreement
with experimental data), in relativistic models, these two lev-
els are either close to or in reversed order. It is accepted that
this inverted order promotes the emergence of the kink, as a
higher occupancy of the 1i11/2 orbital compared to the 2g9/2

orbital favours an expansion of the charge radii [3,6,11,12].
(For simplicity, we often refer to the subshells nl j as orbitals).
Thus, new Skyrme functionals have been developed [10,13]
by modifying the relation between the spin-orbit strengths of
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the isovector part (W ′
0) and the isoscalar part (W0) to approach

that of the RMFA.
A different method proposed by Fayans et al. [14–17],

in the context of non-relativistic mean-field functionals,
involves introducing density gradient dependence into the
surface and pairing terms. After adjusting the parameters,
this method allows a simultaneous description of odd-even
staggering effects in energies and charge radii. However, the
microscopic origin of these terms has been questioned [6].
Influenced by the chiral effective field theory, an alternative
approach incorporated a density-dependent component asso-
ciated with three-nucleon forces in the spin-orbit interaction
[9,12,18]. These methods have helped to increase the magni-
tude of the kink in the charge radii of lead isotopes, bringing
it closer to the experimental value. Yet, in references [7,11], a
reasonable kink was achieved while sticking with W ′

0 = W0,
like in standard Skyrme functionals, as long as the value of
W0 is set correctly to ensure a high probability of occupying
the neutron 1i11/2 level.

Several research groups have recently reported substantial
advances in understanding the mechanism responsible for the
kink effect. For example, the effect of the core swelling due
to the pairing interaction that, globally, reduces the radius of
valence neutron orbitals is discussed in Ref. [19]. The effects
of the tensor interaction in relativistic models through its
impact on the spin-orbit potential, which influences the occu-
pancy probabilities of sp neutron states, and symmetry energy
are considered important in Ref. [7]. However, for a given
neutron configuration, the global effects of tensor interac-
tions are small, as noted in [20]. In Refs. [21,22], in addition
to the symmetry energy, the particle-vibration coupling in A
odd nuclei is also considered relevant. In the present work,
we will consider only even-even nuclei. In Refs. [11,23], the
crucial role played by the neutron orbital 1i11/2 in the kink is
related to its large overlap with the nodeless proton orbitals
that contribute the most to the kink [4,11]. However, this con-
clusion is based on the hypothesis that these overlaps give a
measure of the interaction between neutrons and protons in
these orbitals, which is not justified. A detailed review of the
effort made to understand the behaviour of the charge radii
in different isotopic families is given in Ref. [6].

This work investigates the mechanism that determines the
kink formation within the RMFA in the lead isotopic family.
We examine, in particular, how the neutron orbitals 1i and
2g intervene in the mechanism and how it is modified in the
non-relativistic limit. Our analyses focus on two key aspects:
firstly, the impact of the spin-orbit interaction on the charge
radius through its influence on the single-particle (sp) wave
functions, and secondly, the effect of valence neutrons on the
charge radius via their influence on the effective sp central
potential.

The paper is organised as follows. In Sect. 2, we pro-
vide brief descriptions of the relativistic model and the

Schrödinger-like equation equivalent to the Dirac equation
used in the calculations. The results for the nuclear charge
radius in lead isotopes are discussed in Sect. 3. We analyse
the impact of the spin-orbit interaction on the charge radius
through its influence on the sp wave functions of the valence
neutrons in Sect. 3.1. The role of the small component of
the sp Dirac spinors of the valence neutrons in the mecha-
nism that explains the generation of the kink is provided in
Sect. 3.2. We analyse how the density distributions of proton
orbitals respond to the perturbation in the central potential
of the Schrödinger-like equation caused by the valence neu-
trons. The conclusions are given in Sect. 4.

2 The relativistic model

In the calculations, we use the RMFA [24–28] with the
parameter set NL3∗ [28] as an appropriate example of a rela-
tivistic model. We assume the no-see (or tree) approximation,
that is, the nuclear ground state contains nucleons only in sp
states of positive energy. In other words, the possibility of
the creation and annihilation of pairs nucleon-antinucleon
by the nucleon field is not considered [29–31]. The time-
independent Dirac spinor ψa(�r) for a nucleon with the rest
mass M in the state a satisfies the time-independent Dirac
equation [25,27]

{−i h̄�α · �∇ + β[M + S(�r)] + V (�r)}ψa(�r) = Eaψa(�r), (1)

where Ea = M + εa , −εa is the binding energy correspond-
ing to the state ψa(�r). S(�r) and V (�r) are the so-called scalar
and vector sp potentials generated through the exchange
between nucleons of the scalar (σ ) and vector (ω, ρ, γ )
bosons, respectively. They are defined as

S(�r) = gσ σ (�r), (2)

V (�r) = gωω0(�r) + τ3gρρ0,3(�r) + 1 + τ3

2
VC(�r), (3)

where, σ(�r) is the static scalar mean field associated to the
σ -meson (effective particle to describe the exchange of two-
pion, coupled to zero angular moment, between nucleons),
ω0(�r) and ρ0,3(�r) are the time components (surviving in the
RMFA) of the ωμ and �ρμ static mean fields associated to
the ω- and ρ-mesons, respectively, while VC is the Coulomb
potential. The arrow in the �ρμ field indicates that it is a vector
in the isospin space. The quantities gσ , gω and gρ are the
coupling constants associated with the interaction of the σ -,
ω- and ρ-meson fields, respectively, and the nucleon field.
τ3 = 1 for a proton state and τ3 = −1 for a neutron state.

The effective density Lagrangian corresponding to the
NL3∗ set contains a potential energy that includes cubic
and quartic self-interacting terms in the scalar field [24,28]:
1
3bσ

3(�r) + 1
4cσ

4(�r), where b and c are parameters fitted in
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the model. The static meson field equations can be written in
the form [25–27]:

[ − �∇2 + m∗
σ

2
(�r)]σ(�r) = −gσ ρS(�r), (4)

[ − �∇2 + m2
ω]ω0(�r) = gωρB(�r), (5)

[ − �∇2 + m2
ρ]ρ0,3(�r) = gρρ3(�r), (6)

where

m∗
σ

2
(�r) = m2

σ + bσ(�r) + cσ 2(�r) (7)

and mσ , mω and mρ are the σ -, ω- and ρ-meson masses,
respectively. ρS(�r) is the scalar density, ρB(�r) is the usual
(nucleon, baryon or vector) density. ρ3(�r) is the isovector
density: difference between the proton ρp(�r) and neutron
ρn(�r) densities.

For nuclei with spherical symmetry, that we will assume
in this work, all densities, fields and potentials also have
spherical symmetry: ρn,p(�r) → ρn,p(r), ρS(�r) → ρS(r),
ρB(�r) → ρB(r), ρ3(�r) → ρ3(r), σ(�r) → σ(r), ω0(�r) →
ω0(r), ρ0,3(�r) → ρ0,3(r), VC(�r) → VC(r), S(�r) → S(r)
and V (�r) → V (r).

In the standard notation, ψa(�r) can be written as

ψa(�r) =
[
φa(�r)
ζa(�r)

]
= 1

r

[
iGa(r)

Fa(r)�σ · r̂
]
yma
jala

(r̂)χa
1
2
, (8)

where Ga(r)
r and Fa(r)

r represent the radial part of the large and
small components, respectively, yma

jala
(r̂) stands for a normal-

ized spin-angular function and χa
1
2

is the nucleon isospinor

[29,32].
In spherical finite nuclei, the neutron ρn(r) and proton

ρp(r) densities and the scalar density ρS(r) can be written as

ρn,p(r) =
∑
a∈occ

2 ja + 1

4π

G2
a(r) + F2

a (r)

r2 , (9)

where a represents an occupied state of neutron for ρn(r) and
proton for ρp(r);

ρS(r) =
∑
a∈occ

2 ja + 1

4π

G2
a(r) − F2

a (r)

r2 , (10)

where a represents an occupied neutron or proton state. The
densities ρB(r) and ρ3(r) can be written in terms of ρn(r)
and ρp(r), as

ρB(r) = ρn(r) + ρp(r), (11)

ρ3(r) = ρp(r) − ρn(r). (12)

2.1 The Schrödinger-like equation equivalent to the Dirac
equation

To facilitate the comparison of the predictions of the rela-
tivistic and non-relativistic mean-field models on the kink
effect, we construct a Schrödinger-like equation equivalent
to the Dirac equation. This can be achieved from Eq. (1)

by writing the small component ζa(�r) of the Dirac spinors
in terms of the large component φa(�r), and considering the
transformation [33]

φ(�r) = B(r)1/2φ̃(�r), (13)

where the subscript a is removed for simplicity, and

B(r) ≡ 2M + ε + S(r) − V (r). (14)

Then, in terms of φ̃(�r), the Schrödinger-like equation can be
written as[

− h̄2

2M
∇2 + Vcent(r, ε) + VSO(r, ε)

]
φ̃(�r) = εφ̃(�r), (15)

where the central (Vcent(r, ε)) and the spin-orbit (VSO(r, ε))
potentials are energy dependent [3,33]. They read as follows:

Vcent(r, ε) = S + V + S2 − V 2 + ε2

2M
+ ε

V

M
+δVcent(r, ε), (16)

δVcent(r, ε) = h̄2

2M

[
1

4
W 2 +1

r
W + 1

2
W ′

]
,

W (r, ε) = − S′ − V ′

2M + ε + S − V
;

VSO(r, ε) = h̄2

2M

2

r
W (r, ε)�l · �s. (17)

Writing the radial part of φ̃(�r) as g(r)/r , we get from Eq.
(13)

G(r) = B(r)1/2g(r). (18)

From Eq. (15), it can be obtained for g(r) the following
Schrödinger-like equation [30]:

− h̄2

2M
g′′(r) + Veff(r, ε)g(r) = εg(r), (19)

where (in the standard notation)

Veff(r, ε) = Vcent(r, ε) + h̄2

2M

l(l + 1)

r2 + VSO(r, ε). (20)

The small component F(r) of a Dirac spinor can be obtained
from their corresponding large component G(r) through the
equation [30,32]

F(r) = h̄[G ′(r) + (k/r)G(r)]
B(r)

, (21)

where k = j + 1/2 for the states with j = j− ≡ l − 1/2
and k = −( j + 1/2) for states with j = j+ ≡ l + 1/2. The
normalization condition for G(r) and F(r) reads∫

[G2(r) + F2(r)]dr = 1. (22)

The functions G(r) and F(r) obtained in the way described
above satisfy the Dirac Eq. (1). However, if F(r) is neglected
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Fig. 1 Single-neutron energies of the 208Pb nucleus calculated in the
RMFA with the NL3∗ parameter set. We use the complete model (label
NL3∗) and take VSO(r, ε) = 0 in Eq. (15), alternatively, for the 1i states
(label VSO,1i = 0), being the 1i13/2 level full and the 1i11/2 level empty,
and for the empty 2g states (label VSO,2 g = 0). The experimental values
shown in the column labelled Exp. are taken from Ref. [34]

in Eq. (22), Eqs. (15–20, 22) represent a non-relativistic
approximation to Eq. (1).

3 Results

The magnitude of the kink in the lead isotopes has been
related to the positions of the neutron energy levels 1i11/2

and 2g9/2 [3,4,7,9–11], which depend on the spin-orbit (SO)
interaction. Figure 1 shows the neutron levels of the 208Pb
nucleus calculated in the RMFA with the NL3∗ parameter
set. The column labelled NL3∗ corresponds to the results of
the standard calculation (complete model). In contrast, the
columns labelled VSO,1i = 0 and VSO,2 g = 0 correspond
to the results obtained when the SO interaction has been
suppressed by hand in Eqs. (15) and (20) (throughout the
calculation) for the partially empty 1i and completely empty
2g neutron levels, respectively (see figure caption). In what
follows, the 1i and 2g orbitals will refer always to neutrons
(ν).

The charge radius isotope shift for the lead isotopic family
relative to the 208Pb nucleus is defined as

�〈r2
c 〉 = r2

c (APb) − r2
c (208Pb). (23)

Fig. 2 The nuclear charge radius isotope shift �〈r2
c 〉 of the APb iso-

topes relative to the 208Pb nucleus, calculated in the RMFA with the
parameter set NL3∗, is plotted for several cases: the “i-conf.”, “g-conf.”
and “g∗-conf.” as indicated in Sect. 3, and including pairing correlations
for neutrons in the BCS approximation [35]. We used the three-point
odd-even staggering formula for the energy gaps. The “VSO,1i = 0”
and “VSO,2 g = 0” labels indicate that VSO(r, ε) = 0 was taken for the
1i- and 2g-neutron states, respectively. The points with the error bars
correspond to the experimental values taken from Ref. [36]. For sim-
plicity, we avoid drawing the values corresponding to A integer with
special marks

The corresponding results in the RMFA with the NL3∗ set
are shown in Fig. 2 for three configurations with SO interac-
tion (complete model) and without SO interaction for the ν1i
and ν2 g orbitals, and the complete model including neutron
pairing correlations (see figure caption).

For the complete model, it can be seen that the kink is
somewhat overestimated for the [208Pb](1i11/2)

N−126 con-
figuration (i-conf.), i.e., when the valence neutrons for the
lead isotopes with N >126 occupy the 1i11/2 level. However,
the kink practically disappears for the [208Pb](2g9/2)

N−126

configuration (g-conf.), as also found in [6]. (For simplicity,
“-conf.” will be written simply as “-conf”). This behaviour
of the kink for the i-conf and g-conf is also exhibited in the
RMFA for older parameter sets as, for example, NL-SH, NL3
[3] or NL-Z [26], and some SHF functionals [11].

In our model, the energies of the neutron orbitals 1i11/2

and 2g9/2 in lead isotopes for A ∼ 208 are close to each
other. Therefore, one can expect that, by including neutron
pairing correlations, the magnitude of the kink will come
closer to the experimental value. This is confirmed in Ref.
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[6] using the relativistic Hartree-Bogoliubov method o by our
results shown in Fig. 2, using the simple BCS approximation
[35]. This is what happens too, for example, in the RMFA
with the NL-Z set [10] or in the relativistic Hartree-Fock
Approximation for appropriate parametrisations [4] (results
for other relativistic models can be found in [6]). In this work,
the results with pairing correlations are not discussed in detail
because we are focused on understanding the mechanism by
which the states 1i and 2g intervene in the kink formation.

The g∗-conf label in Fig. 2 corresponds to the results of
placing N − 126 neutrons in the 2g7/2 states (with j = j−,
E2g7/2 � −1.0 MeV for 214Pb), instead of in the 2g9/2 ones
(with j = j+) as for the g-conf. The magnitude of the kink
has increased sensibly with respect to that of the g-conf. We
take into account that for the 214Pb nucleus, the rms neutron
radius 〈r2g7/2〉 � 7.33 fm is slightly larger than 〈r2g9/2〉 �
7.08 fm. With this result, it cannot be ruled out the possibility
that the greater magnitude of the kink for the g∗-conf than
for the g-conf may be due, in part, to the fact that 〈r2g7/2〉 >

〈r2g9/2〉. Notice that in Ref. [10], a greater ability to increase
the nuclear charge radius is attributed to the neutrons in the
1i11/2 or 2g9/2 orbitals as their rms radii increase.

3.1 The spin-orbit interaction for the valence neutron
orbitals and the kink effect

As mentioned above, it is known that the SO interaction
strongly affects the kink indirectly by influencing the sp ener-
gies of the valence neutrons, which, in turn, determine their
occupancy probabilities [7,9–11,13].

To analyse a possible direct effect of this interaction, we
neglect the VSO(r, ε) potential in Eqs. (19, 20), alternatively,
for the 1i and 2g states throughout the calculation. The cor-
responding neutron sp levels for 208Pb are shown in the
columns labelled as VSO,1i = 0 and VSO,2 g = 0, respec-
tively, in Fig. 1. For the case VSO,1i (r, ε) = 0, the degenerate
levels 1i13/2 and 1i11/2 will be the least bound levels occupied
by neutrons. If 14 neutrons are placed in the 1i13/2 orbital,
the same configuration as that of the complete relativistic
model in the ground state is obtained. Then, if for A >208,
neutrons are added to the 1i11/2 orbital, a kink almost iden-
tical to that of the complete model with the i-conf is formed,
as can be seen in Fig. 2, line “i-conf., VSO,1i = 0”. The two
lines, with and without SO interaction for the 1i states in the
i-conf, practically coincide for A > 208; The slight differ-
ences observed for A < 208 can be attributed to the distinct
filling orders of the sp energy levels in the two lines. We also
notice that, quite generally, 〈r1i11/2〉 � 〈r1i13/2〉 (see below).

The above results show that, even without SO interaction
for the 1i-states, the i-conf of the lead family is as kinky as it
is when the SO interaction is present. From the point of view
of a non-relativistic mean-field formalism, this is unexpected.
In fact, in the non-relativistic limit of the RMFA considered

in this work, i.e., neglecting the small component of the 1i
Dirac spinors in Eq. (22), the result obtained for the “i-conf.,
VSO,1i = 0” case is not possible. From Eqs. (19) and (20), it
can be seen that taking VSO(r, ε) = 0, the states belonging
to a SO doublet are degenerate, and their corresponding g(r)
functions (and consequently also the G(r) ones) satisfy the
same linear equation. Then, they must be proportional to
each other. As explained above, in the non-relativistic limit,
the small component of the sp Dirac spinors is neglected in
Eq. (22). Then, the g(r) and G(r) functions of the two SO
partners will be identical. Consequently, if VSO,1i (r, ε) = 0,
not kink effect (KE) is possible for the lead isotopic family
in the i-conf.

However, in the relativistic formalism, when the small
components of the Dirac spinors are considered, the situa-
tion is different. The functions Fj= j+(r) and Fj= j−(r) for the
states of a SO doublet are different, even in the hypothetical
case that VSO(r, ε) = 0, as can be seen from Eq. (21). Conse-
quently, the normalization condition for the sp Dirac spinors
given by Eq. (22) implies that the corresponding G j= j+(r)
andG j= j−(r) functions of the SO doublet cannot be identical
but only proportional to each other. Thus, in the relativistic
models, even ifVSO(r, ε) = 0, the radial parts of the two com-
ponents of the sp Dirac spinors of a SO doublet are different,
in contrast to what happens in the non-relativistic mean-field
formalism. This is because the Dirac spinors obey a Dirac
equation rather than a Schrödinger equation.

The kink obtained in the relativistic “i-conf., VSO,1i = 0”
case is because the radial parts of the small components of the
1i13/2 and 1i11/2 orbitals are different from each other. Thus,
an abrupt change in the trend of the magnitude of the charge
radius appears when A increases from A = 208 to A = 210
(being filling the 1i11/2 level). We remark that 〈r1i11/2〉 �
〈r1i13/2〉 for 208−−214Pb, i.e., the radius of the neutron orbital
responsible for the kink in this isotopic family is smaller
than that of its SO partner, which rules out the possibility
that the KE could be attributed to the fact that 〈r1i11/2〉 be
larger than 〈r1i13/2〉. This result indicates that factors other
than the magnitudes of 〈r1i11/2〉 and 〈r1i13/2〉 are involved in
the formation of the kink. For the i-conf (with VSO,1i (r) =
0), we will see in subsection 3.2 that, ultimately, the small
component of the ν1i11/2 orbital is also primarily responsible
for the KE.

In the “i-conf., VSO,1i = 0” case that we are studying,
the 1i states are degenerate. Thus, we can consider filling
the 1i11/2 level before the 1i13/2 one for the lead isotopes
with 195 ≤ A ≤ 206. Then, as A increases, an anti-kink (or
kink inverted) is found at A = 206 due to the change of the
charge radius slope as the 1i13/2 level is filling. Actually, as
the 1i13/2 and 1i11/2 orbitals are degenerate, for A ≥ 195,
neutrons would try to share these two orbitals and one can
imagine a strong cancellation between the kink at A = 208
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and the anti-kink at A = 206. Then, if the SO interaction
were re-established for the 1i-states, the normal ordering of
energy levels for the 1i-states would be recovered and the
normal kink would show up even if the wave function were
not modified by the SO interaction (because, according to
the results of Fig. 2, for VSO,1i (r) = 0 and VSO,1i (r) = 0 the
kinks are very similar). However, this behaviour cannot be
reproduced by the non-relativistic mean-field models. This is
because, in these models, to generate a kink when neutrons
are filling the 1i13/2 and 1i11/2 orbitals, the wave functions
of the two SO partners should be modified significantly by
the SO interaction.

The results outlined in this Subsection show that when
VSO,1i (r) = 0 and neutrons are added to the lead 1i11/2

orbital for N > 126, the relativistic models will exhibit a
more rapid increase in the nuclear charge radius than the
non-relativistic mean-field models. Thus, as the strength of
the SO interaction is recovered from zero to its typical value,
the former models will start with a larger kink than the latter.
This indicates that a larger kink can generally be expected
for relativistic models than for non-relativistic ones, as noted
in [7].

Now, we consider a case identical to the g-conf previously
discussed but with VSO,2g(r) = 0 throughout the calculation.
The corresponding results are labelled as “g-conf., VSO,2g =
0” in Fig. 2. They show a slight increase in the magnitude of
the kink relative to that of the complete model (VSO,2g = 0).
We notice that for 214Pb, 〈r2g9/2,VSO,2 g=0〉 � 7.22 fm, which
is slightly greater than 〈r2g9/2,VSO,2 g =0〉 � 7.08 fm.

Finally, the case labelled as “g∗-conf., VSO,2g = 0” in
Fig. 2 is identical to the case labelled as “g∗-conf.”, but with
VSO,2g(r) = 0 throughout the calculation. A slight decrease
in the magnitude of the kink can be observed compared to
that of the corresponding complete model (VSO,2 g = 0). For
214Pb, 〈r2g7/2,VSO,2 g=0〉 � 7.24 fm, which is slightly smaller
than 〈r2g7/2,VSO,2g =0〉 � 7.33 fm.

The results of the two previous paragraphs indicate that
the effect of the SO interaction on the 2g9/2 and 2g7/2 orbitals
has a small influence of opposite sign on the magnitude of
their corresponding kinks. This influence may be attributed,
in part, to the tiny effects of the SO interaction on the neutron
rms radii of the 2g orbitals, as an increase (decrease) in the
magnitude of the kink with the SO interaction aligns with an
increase (decrease) in the neutron rms radius of the 2g9/2 or
2g7/2 orbitals.

However, if we compare the results for the two cases with
VSO,2 g = 0 considered, we can see that the magnitude of
the kink is appreciably larger for the “g∗-conf., VSO,2g =
0” (with j2g7/2 = j−) than for the “g -conf., VSO,2g = 0”
(with j2g9/2 = j+), although now 〈r2g7/2〉 = 7.24 fm �
〈r2g9/2〉 = 7.22 fm. The different magnitude of the kink in
these two cases must be attributed to relativistic effects that

make the wave functions of the two SO partners 2g7/2 and
2g9/2 different from each other.

From the results depicted in Fig. 2 and discussed earlier
in this subsection, it is clear that for the lead isotopic family,
neutrons from the 1i and 2g SO doublets in states with j =
j− are more efficient than in states with j = j+ in increasing
the magnitude of the kink (without this being attributable
to their different rms radii). Thus, concerning the KE, the
behaviour of the 1i11/2 and 1i13/2 orbitals is notably different,
more than that of the 2g7/2 and 2g9/2 orbitals. In the case
of neglecting the SO interaction for orbitals 1i and 2g, we
will see in Subsec. 3.2 that G j−(r) and G j+(r) are almost
identical for the two SO partners. Consequently, the different
behaviour of the orbitals of two SO partners arises almost
entirely from differences in the small components.

In the realistic case of considering the SO interaction, it
turns out that for two SO partners, G j−(r) � G j+(r), while
Fj−(r) and Fj+(r) are rather different (roughly, as in the case
of neglecting the SO interaction). As the F(r) functions are
quite small, an accurate numerical calculation is necessary
to show the effect of the differences Fj−(r) = Fj+(r) and
G j−(r) = G j+(r) on the nuclear rms charge radius.

3.2 Small component of the Dirac spinors and the kink
effect

In the previous Subsection, we have found indications that,
in the RMFA, the kink in lead isotopes is significantly influ-
enced by the contribution of the small component of the sp
Dirac spinors of valence neutrons on the scalar and nucleon
density distributions. In this subsection, we will delve into
this topic for the i-conf, g-conf, and g∗-conf defined above.
To do this, we solve Eq. (19) to obtain g(r) and deter-
mine Ga(r) using Eq. (18) for all occupied sp states. Then,
in the configuration considered, we set the corresponding
F1i11/2(r), F2g9/2(r), or F2g7/2(r) function equal to zero. The
remaining Fa(r) functions of the occupied orbitals are calcu-
lated from Eq. (21). All the sp Dirac spinors are normalised
to unity according to Eq. (22).

The results for the charge radius isotope shift �〈r2
c 〉 are

shown in Fig. 3. For the three configurations considered, it is
observed that the magnitude of the kink strongly decreases by
a similar amount when the small component of the neutron
orbital characterising the configuration is neglected. (In fact,
for the g-conf and g∗-conf, the orientation of the kink in the
figure becomes inverted to the normal one, i.e. it becomes
an anti-kink). The different magnitudes of the kink corre-
sponding to the cases “g-conf., F(2g9/2) = 0” and “g∗-
conf., F(2g7/2) = 0” in Fig. 3 are due, essentially, to the SO
interaction, which is mainly responsible for G2g9/2 = G2g7/2

(because the potential Vcent(r, ε) in Eq. (15) is very similar
for both orbitals, owing to its relatively small energy depen-
dence). This conclusion is consistent with the result of Fig. 2,
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Fig. 3 The nuclear charge radius isotope shift �〈r2
c 〉 of the APb iso-

topes relative to the 208Pb nucleus in the RMFA with the parameter set
NL3∗ is presented for different cases. Lines labelled as “i-conf.”, “g-
conf.”, “g∗-conf.” or experimental points correspond to the same data
as in Fig. 2. Lines including “F1ij = 0” or “F2gj = 0” show the results
neglecting the corresponding F component, as explained in the body
text

showing that the difference in magnitude of the kinks for the
g-conf and g∗-conf is larger when VSO,2 g = 0 than when
VSO,2 g = 0.

We have stated in the previous paragraph that for the
three configurations considered, the magnitude of the kink
decreases by a similar amount when the small component
of the neutron orbital characterising the configuration is
neglected. This result indicates that the small component of
the valence neutrons will remain essential in the kink forma-
tion when considering pairing correlations. This is ensured
by the fact that, between the neutron valence orbitals, the
1i11/1 and 2g9/2 orbitals have, by far, the highest occupancy
probabilities and their small components contribute to the
magnitude of the kink by a similar amount.

In the rest of this Subsection, we will attempt to explain
why the small component of the Dirac spinors plays such
an important role in the kink formation. It will be helpful to
consider the contribution of valence neutrons to the central
potential Vcent(r, ε) for protons in the Schrödinger-like Eq.
(15). (We will assume that, regarding the kink, the impact
on the proton SO potential is less relevant). Neutrons do not
contribute to the Coulomb potential. Then, assuming that the

meson mass terms in Eqs. (4, 5, 6) are significantly greater
than the corresponding Laplacian terms, allowing for an iter-
ative solution, we can write the scalar and vector potentials
for protons in a spherical nucleus as

S(r) � − g2
σ

m∗
σ

2

(
1 + 1

m∗
σ

2 ∇2 + ...

)
ρS(r), (24)

V (r) � g2
ω

m2
ω

(
1 + 1

m2
ω

∇2 + ...

)
ρB(r)

+ g2
ρ

m2
ρ

(
1 + 1

m2
ρ

∇2 + ...

)
ρ3(r). (25)

To clarify the role of the small component of the sp Dirac
spinors in the formation of the kink, we first consider the con-
tribution of a single-neutron in the orbital a (with the same
occupancy probability for the 2 ja + 1 states of this orbital)
to the proton central potential Vcent(r, ε) in Eqs. (15, 16). We
denote this contribution as V n,a

cent(r, ε), and this meaning will
remain unchanged in the rest of the work. Let us suppose
ρS,a(r), ρn,a(r), σ a(r), ωa

0(r), ρ
n,a
0,3 (r), Sa(r) and Va(r) are

the contributions of this neutron to the scalar ρS(r) and neu-
tron ρn(r) densities, the σ(r), ω0(r), ρ0,3(r) fields, and the
scalar S(r) and vector V (r) potentials, respectively. If in Eq.
(16) we neglect the relatively small terms including the factor
M−1, which are small relativistic contributions, taking into
account Eqs. (2) and (3), we can write:

Vcent(r, ε) � Vcent∗(r) ≡ S(r) + V (r) (26)

and

V n,a
cent(r, ε) � V n,a

cent∗(r) ≡ Sa(r) + Va(r)

= gσ σ a(r) + gωωa
0(r) + gρρ

n,a
0,3 (r). (27)

We notice that the potentials gσ σ (�r) and gωω0(�r) in Eqs.
(2, 3) for protons and neutrons are identical but the potential
τ3gρρ0,3(�r) in (3) is different. To facilitate discussion only,
we assume that the meson masses are large enough to allow
us to neglect the Laplacian terms in Eqs. (24) and (25). In
other words, we consider S(r) and V (r) in the simplest local
density approximation (LDA). Then, we can write V n,a

cent∗(r)
for protons arising from one neutron in the a orbital as

V n,a
cent∗(r) � − g2

σ

m∗
σ

2 ρS,a(r) +
[
g2
ω

m2
ω

− g2
ρ

m2
ρ

]
ρn,a(r). (28)

Considering Eqs. (10–12) (and often omitting, for simplicity,
the dependence on r in the functions Ga(r) and Fa(r) from
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this point onward), we have

V n,a
cent∗(r) �

[
g2
ω

m2
ω

− g2
ρ

m2
ρ

]
G2

a + F2
a

4πr2 − g2
σ

m∗
σ

2

G2
a − F2

a

4πr2

=
[
g2
ω

m2
ω

− g2
ρ

m2
ρ

− g2
σ

m∗
σ

2

]
G2

a

4πr2

+
[
g2
ω

m2
ω

− g2
ρ

m2
ρ

+ g2
σ

m∗
σ

2

]
F2
a

4πr2 .

(29)

It is important to note that adding one neutron to the
nucleus in a specific orbital triggers modifications in all
orbitals due to the self-consistency or rearrangement effects.
These modifications, however, are not considered in Eq. (29).
The expression of V n,a

cent∗(r) in this equation represents the
modification of Vcent∗,(r) in the zeroth order of perturbation
theory.

For appropriate functionals used in the RMFA, g2
ω

m2
ω
− g2

ρ

m2
ρ

�
g2
σ

m∗
σ

2 (for example, for the NL3∗ set
g2
ρ/m2

ρ

g2
ω/m2

ω
� 0.134; i.e.,

g2
ρ

m2
ρ

<<
g2
ω

m2
ω

). This implies, on the one hand, that the overall

contribution of the large component Ga to V n,a
cent∗(r) in Eq.

(29) is negative and, on the other hand, that the contribu-
tions of Ga to the σ -scalar and ω-vector potentials exhibit
opposite signs, resulting in a substantial offset between them.
Conversely, contributions of the small component Fa to the
σ -scalar and ω-vector potentials in V n,a

cent∗(r) are positive and
add constructively to each other.

To compare the magnitudes of theG2
a/4πr2 and F2

a /4πr2

factors in Eq. (29), we have depicted them in Fig. 4 for the
NL3∗ set. It can be seen that inside the nucleus, the factor of
F2
a /4πr2 outweighs that of G2

a/4πr2 by roughly five times.
This fact strongly enhances the role of the small component
of the valence neutron orbitals in lead isotopes in the central
potential Vcent(r, ε) in the Schrödinger-like equation (15).

Given that

∣∣∣∣ g2
ω

m2
ω

− g2
ρ

m2
ρ

− g2
σ

m∗
σ

2

∣∣∣∣ <
g2
ω

m2
ω

− g2
ρ

m2
ρ

+ g2
σ

m∗
σ

2 , in the non-

relativistic limit, the absence of the contribution of the small
component Fa(r) (= 0) to Vcent(r, ε) cannot be compen-
sated with the small contribution due to the renormalisation
of the norm of the large component Ga(r) to the unity. Actu-

ally, as g2
ω

m2
ω

− g2
ρ

m2
ρ

− g2
σ

m∗
σ

2 < 0, the contribution due to this

renormalisation will have a sign opposite to that of the term
[...]F2

a /4πr2 in Eq. (29). Note that the contribution of the
vector ρ-meson to Vcent∗(r) or V n,a

cent∗(r) is quite small com-
pared to that of the vector ω-meson but becomes significant

in the factor

[
g2
ω

m2
ω

− g2
ρ

m2
ρ

− g2
σ

m∗
σ

2

]
of Eq. (29). Consequently,

globally, this contribution should not be neglected.
The discussion in the preceding paragraph indicates that,

for a given orbital, the contribution of its small component
with respect to that of its large component is approximately

Fig. 4 Factors [...] of G2
a/4πr2 (dashed line) and F2

a /4πr2 (solid line)
in Eq. (29), as indicated in the figure, for the 208Pb nucleus with the
NL3∗ parameter set

five times greater for the central potential in the Schrödinger-
like equation (15) than for the nucleon density in Eq. (11).
This highlights the significant role of the small component of
the valence neutron orbitals in the three configurations of lead
considered in Fig. 3. It is worth realising that the relevance
of the small component Fa(r) on Vcent∗(r) is due, on the one
hand, to the different signs of the source terms in the scalar
and vector field Eqs. (24, 25) and, on the other hand, to the
different signs in front of F2

a (r) on the relativistic scalar and
nucleon densities (see Eqs. (10, 9)).

Concerning the discussion in the two previous paragraphs
about the role of the small component Fa(r) of the Dirac
spinors on the central potential Vcent(r, ε), it is worth not-
ing that a similar mechanism to the one discussed there is
responsible for the saturation of nuclear matter in conven-
tional nuclear relativistic models. We briefly recapitulate this
mechanism for symmetric nuclear matter. As the nuclear den-
sity increases, S(r)−V (r) and, consequently, B(r) decreases
(see Eq. (14)). Then, the absolute value of the small com-
ponent of the Dirac spinors grows with increasing density
(see Eq. (21)). This leads to the scalar density growing more
slowly with the nucleon density than this density itself. Con-
sequently, the attractive scalar potential in Eq. (24) exhibits
slower growth with nucleon density than the repulsive vector
potential in Eq. (25). This difference in growth rates deter-
mines the saturation of nuclear matter. Thus, although the
magnitude of the small component of the sp Dirac spinors is
much smaller than that of the large one (except near the nodes
of the latter in finite nuclei), and the small component hardly
contributes to the nuclear density, its role in the nuclear satu-
ration mechanism is essential for achieving the saturation of
nuclear matter.

The contribution of the term proportional to F2
a /4πr2 in

V n,a
cent∗(r) influences the characteristics of the kink for two

reasons. Firstly, it affects the r dependence of V n,a
cent∗(r) and,

secondly, it reduces the depth of this potential.
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It is worth noting that VSO(r, ε) depends, essentially, on
the magnitude of S(r) − V (r) (see Eq. (17)). Studying the
impact of the small component of the valence neutron orbitals
on S(r) − V (r), as we did previously for S(r) + V (r), it is
easy to verify that this impact is irrelevant. This implies that
VSO(r, ε) hardly depends on the small component of those
orbitals.

3.2.1 Comparison between the kinks of two configurations

According to the previous paragraph, the small components
of the valence neutrons orbitals 1i and 2g affect, essentially,
the central potential Vcent(r, ε). Then, to understand the dif-
ferent magnitudes of the kink in lead isotopes for two con-
figurations considered previously, we can compare the con-
tribution to the central potential Vcent∗(r) of one neutron in
each of the two orbitals (a and b) that distinguish the con-
figurations. The difference between these two contributions,
δV n,a−b

cent∗ (r), will be mainly responsible for the different kinks
in the two cases considered. We can write

δV n,a−b
cent∗ (r) �

[
g2
ω

m2
ω

− g2
ρ

m2
ρ

− g2
σ

m∗
σ

2

][
G2

a

4πr2 − G2
b

4πr2

]

+
[
g2
ω

m2
ω

− g2
ρ

m2
ρ

+ g2
σ

m∗
σ

2

] [
F2
a

4πr2 − F2
b

4πr2

]
.

(30)

To compare the magnitude of the small and large com-
ponents of the valence neutron orbitals 1i and 2g, we have
depicted in Fig. 5 the quantities F2

a /r2 and −G2
a/r

2 as func-
tions of r for these orbitals. (The negative sign in −G2

a/r
2

is used for clarity in the figure, and it will also prove bene-
ficial for subsequent analysis). It is seen that the magnitude
of G2

a(r) can exceed that of F2
a (r) by a factor greater than

fifteen. The substantial disparities between the large compo-
nents of the two orbitals of an SO doublet are essentially due
to the SO interaction.

Next, we analyse the impact of adding one neutron to the
valence orbitals 1i or 2g of the 208Pb nucleus on the nuclear
charge radius. To accomplish this, we evaluate the contribu-
tion of this neutron to the proton central potential Vcent(r, ε).
This contribution is approximated, first, by V n,a

cent∗(r) from
Eq. (27). We consider the i-conf, g-conf and g∗-conf. The
mean fields in Eq. (27) are obtained by solving numerically
the corresponding field Eqs. (4–6). The source terms in these
equations are given by Eqs. (10–12), considering only the
contribution of the valence neutron in the orbitals 1i11/2,
2g9/2 or 2g7/2, depending on the configuration under consid-
eration. These orbitals are assumed to be identical to those of
208Pb. (Quantitatively, it would not be significant difference
if we choose those orbitals from the 209Pb nucleus).

Fig. 5 The quantities −G2
a/r

2 (negative) and F2
a /r2 (positive) corre-

sponding to the orbitals 1i13/2 (full), 1i11/2 (empty) and 2g (empty) in
the 208Pb nucleus, as indicated in the figure, for the NL3∗ parameter set

Before analysing the cases studied in this work with the
complete model, which includes the SO interaction for all
orbitals, we first discuss the simplest cases where the SO
interaction is neglected for the 1i orbitals and later for the 2g
orbitals.

If we consider the SO partner orbitals 1i13/2 (full) and
1i11/2 (empty), and neglect their SO interaction (ε1i13/2 =
ε1i11/2 ), the results for the contributions of the large Ga and
small Fa components of these orbitals to V n,a

cent∗(r) shown in
Fig 6 are easy to interpret. We observe that the contributions
of G1i13/2 and G1i11/2 are practically identical to each other,
as expected for these SO partners, and the first addend in Eq.
(30) is negligible. The contribution of the small component
F1i13/2 is notably less relevant than the contribution of F1i11/2 .
Therefore, there is a significant difference between the com-

plete contribution of the orbital 1i13/2, V
n,1i13/2
cent∗ (r), and that

of the orbital 1i11/2, V
n,1i11/2
cent∗ (r). This difference is essen-

tially due to the second addend in Eq. (30), which depends
on the small components F1i13/2 and F1i11/2 .

In Fig. 6, the minimum of V
n,1i11/2
cent∗ (r) is shallower than

that of V
n,1i13/2
cent∗ (r) and is placed to its right. This indicates

that neutrons in the 1i11/2 orbital will lead to a larger nuclear
charge radius than those in the 1i13/2 orbital (as shown in
Fig. 2). Indeed, Fig. 6 suggests that the impact of neutrons
in the 1i13/2 orbital, through its F1i13/2 component, on the
nuclear charge radius will be quite limited (as confirmed
numerically), since the contribution of this component to

V
n,1i13/2
cent∗ (r) is relatively small. Essentially, this contribution

slightly reduces the depth of its minimum.
Figure 7 shows the contributions of a single-neutron to

V n,a
cent∗(r) from the large Ga and small Fa components of the

orbitals 1i13/2 (full) and 1i11/2 (empty) when considering the
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Fig. 6 Contributions of a single-neutron in the a orbital to V n,a
cent∗ (r)

from the large (Ga), small (Fa) and both (Ga + Fa) components with
the NL3∗ parameter set, assuming VSO,1i (r, ε) = 0. The a orbital can
either represent the (full) orbital 1i13/2 or the (empty) orbital 1i11/2
of the 208Pb nucleus. The thinner lines with negative values represent
the contributions of the Ga components, and the thinner lines with
positive values represent those of the Fa components. The thicker lines
represent the total contributions from the a orbitals. All contributions
were obtained numerically from Eq. (27). The contributions of the mean
fields in this equation were determined by solving the field Eqs. (4–6)
with the appropriate source terms. In the LDA, the contributions of a
single-neutron to V n,a

cent∗ (r) from Ga and Fa reduce to [...]G2
a/r

2 and
[...]F2

a /r2 in Eq. (29), respectively

Fig. 7 The same as Fig. 6, but considering VSO,1i (r, ε) = 0

SO interaction for these states. We have contributions qualita-
tively similar to those obtained when VSO,1i = 0. However,
the contributions of the large components of these orbitals
exhibit slight disparities from each other. For the valence neu-
trons in the 1i11/2 orbital, i-conf, it can be seen in Fig. 2 that
the magnitude of the kink for VSO,1i = 0 is almost identical
to that for VSO,1i = 0. Regarding the kink, the subtle differ-
ences between the contributions of this orbital to V n,a

cent∗(r) in
these two cases appear to offset each other.

Fig. 8 The same as Fig. 6, but for the 2g9/2 and 2g7/2 (empty) orbitals
of the 208Pb nucleus, taking VSO,2g(r, ε) = 0: Contributions of one
neutron in the a orbital to V n,a

cent∗ (r) from the large Ga (thinner lines
with negative values), small Fa (thinner lines with positive values) and
both (Ga + Fa) (thicker lines) components

The contributions from a single valence neutron in the 1i

orbitals of the 208Pb nucleus to V
n,1i j
cent∗ (r) discussed above do

not account for self-consistent or rearrangement effects due
to the perturbation of the valence neutron on other occupied
orbitals. However, we will see that this perturbation is impor-
tant and will contribute significantly to V n,a

cent∗(r). Therefore,
conclusions about the contribution of valence neutrons to
V n,a

cent∗(r), reached under the assumption of ignoring self-
consistent effects, must be reconsidered when these effects
are taken into account.

Now, we consider the 2g states and neglect their SO inter-
actions as we did previously for the 2i states. In this case, the
G2g9/2 and G2g7/2 functions are also practically identical to
each other. Consequently, similarly to what happened previ-
ously for the 1i states, the different magnitude of the kink for
the cases “g-conf, VSO,2g = 0” and “g∗-conf, VSO,2g = 0”
in Fig. 2 is almost entirely due to the difference between the

F2g9/2 and F2g7/2 functions. The contributions to V
n,2g j
cent∗ (r)

of these two components can be appreciated in Fig. 8. The
contribution of F2g7/2 (with j = j−) is quite significant and
larger than that of F2g9/2 (with j = j+) for small values of r .

Due to the contribution of F2g7/2 , the minimum of V
n,2g7/2
cent∗ (r)

becomes shallower than that of the V
n,2g9/2
cent∗ (r) and shifts to

its right. Thus, it is evident that in the case VSO,2g = 0, due to
the effect of the small components, the orbital 2g7/2 is more
kinky than the orbital 2g9/2, as observed in Fig. 2.

To understand the different magnitudes of the kinks shown
in Fig. 2 for the g-conf and g∗-conf when VSO,2g = 0,

we have computed V
n,2g9/2
cent∗ (r) and V

n,2g7/2
cent∗ (r) in this sce-

nario. The results are presented in Fig. 9. It can be seen that
the contributions of the small components F2g9/2 and F2g7/2
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Fig. 9 The same as Fig. 8, but considering VSO,2 g(r, ε) = 0

closely resemble those observed when VSO,2g = 0 in Fig. 8.
Now, for VSO,2 g = 0, the components G2g9/2 and G2g7/2

exhibit significant differences between them (refer to Fig. 5).

Consequently, their respective contributions to V
n,2g9/2
cent∗ (r)

and V n,2 g7/2
cent∗ (r) also differ from each other, as illustrated

in Fig. 9. Comparison of these results with the correspond-
ing ones in Fig. 8 reveals that the contribution of G2g7/2 is
more favourable to the kink when VSO,2 g = 0 than when
VSO,2 g = 0, while that of G2g9/2 is less favourable to the
kink when VSO,2 g = 0 than when VSO,2 g = 0. This obser-
vation explains why the kink magnitudes for the g-conf and
g∗-conf differ more from each other when VSO,2g = 0 than
when VSO,2g = 0 (see Fig. 2).

Now, we discuss the more intricate cases of the i-conf and
g-conf. In Fig. 10, we depict the contributions to V n,a

cent∗(r) of
one neutron in the orbitals 1i11/2 (i-conf) and 2g9/2 (g-conf).
It can be seen that the contributions of the large components
are quite different from each other. In contrast, those of the
small components are rather similar (as expected for two
members of a pseudospin doublet [37–39]). Consequently,
the significant difference in the magnitude of the kink for
the i-conf and g-conf should be primarily attributed to the
substantial disparity between the functionsG1i11/2 andG2g9/2

in Eq. (30).
For the two orbitals considered, the contributions of the

small components are not negligible in comparison to those
of the large components and significantly reduce the depth
of V n,a

cent∗(r). This effect will contribute to an increase in the
nuclear charge radius for both configurations. The shift of the

minimum of V
n,1i11/2
cent∗ (r) due to the contribution of the small

component F1i11/2 is notable and also favours the increase
of the nuclear charge radius. The displacement of the first

minimum of V
n,2g9/2
cent, (r) due to the contribution of F2g9/2

is smaller and occurs in the opposite direction compared to

that of V
n,1i11/2
cent, (r). While this displacement will have a slight

Fig. 10 The same as Figs. 6, 7, 8 and 9, but for the 1i11/2 and 2g9/2
orbitals, taking VSO,1i,2g(r, ε) = 0

decreasing effect on the charge radius, its impact should be
smaller than the opposing effect resulting from the reduction

of the depth of V
n,2g9/2
cent, (r). The net effect of the F2g9/2 contri-

bution on the charge radius, including self-consistent effects,
is a noticeable increase in magnitude, as illustrated in Fig. 3.
Accurate numerical calculations indicate that neutrons in the
F1i11/2 orbital are approximately one-third more efficient in
increasing the nuclear charge radius than those in the F2g9/2

orbital (see Fig. 3).

Upon comparing the overall potentials V
n,1i11/2
cent∗ (r) and

V
n,2g9/2
cent∗, (r) in Fig. 10, it appears that the first potential is more

likely to favour an increase in the nuclear charge radius than
the second potential. This intuition is further supported by
the results depicted in Fig. 2. The two wells of the second
potential will attract protons towards them. The first well is
deeper than the second. So, at first glance, it seems this feature
will be important for the dominance of the former over the
latter. However, as we will see below, self-consistent effects
increase the relative relevance of the second well compared
to the first one and must be considered. These self-consistent
effects are practically independent of the SO interaction of
the valence neutrons.

Comparing the results of Figs. 7 and 9 for the contri-
butions to V n,a

cent∗(r) from the large and small components
of the neutron orbitals 1i and 2g with the corresponding
quantities −G2

a/r
2 and F2

a /r2 in Fig. 5 can provide valu-
able insights. It is clear that the (negative) contribution of
the large component to V n,a

cent∗(r) is roughly proportional to
−G2

a/r
2, and the (positive) contribution of the small com-

ponent is roughly proportional to F2
a /r2, as indicated by

Eq. (29). That is, for determining the contributions of Ga

and Fa to the potential V n,a
cent∗(r), separately, the LDA works

quite well. However, the probability density corresponding
to one neutron in the orbital a, ρn,a(r), is proportional to
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(G2
a+F2

a )/r2, while we have seen that for the NL3∗ set, in the
inner part of the nucleus, V n,a

cent∗(r) is, roughly, proportional
to (−G2

a + 5 × F2
a )/r2 (see Eq. (29) and Fig. 4, and note the

different relative signs of the contributions of Ga and Fa to
ρn,a(r) and V n,a

cent∗(r)). Therefore, as 5×F2
a cannot be consid-

ered negligible, in general, compared to G2
a , V n,a

cent∗(r) cannot
be assumed to be proportional to ρn,a(r) ∝ (G2

a + F2
a )/r2.

Consequently, in general, the LDA will not be adequately
satisfied when considering the contribution of the entire a
orbital to V n,a

cent∗(r) (we will see below that self-consistent
effects aggravate this failure of LDA). This result highlights
the impossibility of accurately determining the contribution
of neutrons in a given orbital a to Vcent∗(r) as a magnitude
proportional to ρn,a(r). Such a limitation in RMFA hampers
the ability to predict the behaviour of the nuclear charge rms
radius for the i-conf, g-conf, or g∗-conf by directly analysing
the valence neutron densities in the orbitals 1i11/2, 2g9/2, or
2g7/2, respectively.

3.2.2 Self-consistency effects of the valence neutrons in
lead isotopes with N > 126 on the proton central
potential in the Schödinger-like equation

Above, we examined the direct effects of the valence neutrons
in lead isotopes on the proton central potential Vcent(r, ε),
approximated by Vcent∗(r). Next, we will study the sec-
ondary self-consistent effects of these neutrons on this poten-
tial, which arise from their perturbation on other occupied
orbitals. We also begin by considering the approximation
Vcent(r, ε) � Vcent∗(r). The changes in Vcent∗(r) produced
by the N − 126 (N > 126) valence neutrons in the APb
nucleus, including both direct and secondary effects, denoted
as δVcent∗(r), can be assessed by comparing the potential
Vcent∗(r) in APb (A > 208) and 208Pb after convergence. For
214Pb (the largest lead isotope we consider), we have

δVcent∗(r) = [Vcent∗(r)]214Pb − [Vcent∗(r)]208Pb. (31)

In Fig. 11, we plot δVcent∗(r) for the i-conf, g-conf and g∗-
conf. In the absence of self-consistent effects, δVcent∗(r)
would be identical to six times (once per neutron exceeding
N = 208 until N = 214) the potential V n,a

cent∗(r) correspond-
ing to the configuration considered, as shown in Fig. 9 for the
g-conf and g∗-conf and in Fig. 10 for the g-conf and i-conf.

The self-consistent effects in δVcent∗(r) for the 214Pb
nucleus can be measured as the difference δVcent∗(r) − 6 ×
V n,a

cent∗(r). In Fig. 12, we depict this difference for the three
configurations considered in this work, revealing that self-
consistency effects are very significant in all three cases. It
can be seen that self-consistency effects increase the poten-
tial δVcent∗(r) between the centre and surface of the nucleus,
roughly coinciding the peak with the maximum of the small
component contribution corresponding to the considered
configuration (see Figs. 9 and 10). However, self-consistency

Fig. 11 The quantity δVcent∗ (r) for protons when six neutrons are
added to the 208Pb nucleus to get 214Pb in the indicated configura-
tions. We have used the NL3∗ parameter set. Note that δVcent∗ (r) is
independent from the proton orbital

Fig. 12 Variation of δVcent∗ (r) due to the secondary self-consistent
effects for protons when six neutrons are added to the 208Pb nucleus to
get 214Pb in the indicated configurations. We have used the NL3∗ set

effects decrease δVcent∗(r) in the surface region, around 7−8
fm, approaching the more significant variation towards the
outermost minimum of the large component or total orbital
contribution for the considered configuration.

These results indicate that the contribution of self-
consistency effects to δVcent∗(r) amplify the direct contri-
bution (given by 6 × V n,a

cent∗(r)) of the small components
and that of the big components for large values of r . Conse-
quently, self-consistency strongly favours the emergence of
the kink in all three configurations of lead (A > 208) con-
sidered, enhancing the direct effects of the valence neutrons
on the proton core that favour the kink formation. Hence,
an accurate determination of the impact of valence neutrons
on the charge radius of lead for N > 126 requires the inclu-
sion of self-consistency. As mentioned above, self-consistent
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effects are practically independent of the SO interaction of
the valence neutrons.

To understand the modifications in the potential Vcent∗(r)
due to the self-consistency effects, it is worth keeping in mind
that the volume element in spherical coordinates correspond-
ing to dr is proportional to r2dr . This behaviour enhances the
relative relevance of Vcent∗(r) in the outer part of the nucleus
compared to the inner part because nucleons beneficial for a
given dr of a larger volume (∝ r2dr ) as r increases.

If, hypothetically, neutrons were added to the 208Pb
nucleus in the 1i11/2 orbital (in the i-conf), a (direct) potential

almost identical to V
n,1i11/2
cent∗ (r) would be generated initially

for protons with each neutron added (see Fig. 10). This poten-
tial would show a minimum (well) around r � 6 fm, attract-
ing protons from the nucleus’s inner part. The movement of
these protons towards the well would increase the nuclear
potential in the inner part of the nucleus (making it less neg-
ative) and would decrease it on the right of the well, shifting
the minimum of the well to larger values of r . In turn, this
well shift would promote greater proton movement at larger
values of r , further increasing the displacement of the well.
This self-consistent process would continue until equilibrium
is reached. The ultimate outcome would be that, if six neu-
trons were added to the 208Pb nucleus in the 1i11/2 orbital,
the potential Vcent∗(r) would vary as δVcent∗(r) depicted in
Fig. 11.

If, hypothetically, neutrons were added to the 208Pb
nucleus in the 2g9/2 orbital (in the g-conf), a potential almost

identical to V
n,2g9/2
cent∗ (r) would be generated for protons with

each neutron added (see Fig. 10). This potential would exhibit
two minima, two wells, attracting protons from their left
sides. However, the internal well would not accumulate pro-
tons because it would lose them on its right due to the attrac-
tion of the outer well (with a larger volume effect ∝ r2). Thus,
the proton potential would increase around the internal well
and decrease on the right of the external well. This explains
how the potential Vcent∗(r) is modified by self-consistent
effects when transitioning from 208Pb to 214Pb. This mod-
ification is illustrated by δVcent∗(r) in Fig. 11.

The case of adding neutrons to the 208Pb nucleus in the
2g7/2 orbital (in the g∗-conf), would be very similar to the
case of adding neutrons to the 2g9/2 orbital previously dis-
cussed.

The impact of the SO interaction of the valence neutrons
in the self-consistent effects is negligible for the three config-
urations considered. If a figure similar to Fig. 11 were drawn
for the cases in which the SO interaction is neglected, alter-
natively, for the 1i and 2g orbitals, only the direct effects
of the SO interaction would be clearly observable. These
effects can be appreciated by comparing Figs. 6 and 7 for
the 1i states and Figs. 8 and 9 for the 2g states. The poten-
tial δVcent∗(r) would barely decrease the depth of its mini-

mum (around r � 7.2 fm) for the i-conf, whereas it would
slightly increase (decrease) around its first minimum for the
g-conf (g∗-conf). These consequences of the SO interaction
of the valence neutrons on Vcent∗(r) allow us to explain its
effects on the charge radius isotope shift on the lead fam-
ily, as depicted in Fig. 2. That is, The SO interaction hardly
influences the kink effect for the i-conf, whereas it slightly
decreases (increases) its magnitude for the g-conf (g∗-conf).

The impact of the Coulomb potential energy on self-
consistent effects in the three configurations discussed above
is perceptible but not significant.

3.2.3 Effects of the relativistic terms of the central potential
in the Schrödinger-like equation on the kink

The potential Vcent∗(r) considered above comprises only the
term S(r) + V (r) from the central potential Vcent(r, ε) in
the Schrödinger-like equation Eq. (16). The remaining terms
of this potential, which include the small factor 1/M and
constitute small relativistic contributions, are yet to be con-
sidered. To assess their impact on the kink, we now consider
the complete potential Vcent(r, ε). The behaviour of the kink
essentially depends on how this potential varies when neu-
trons are added to the lead nucleus for N > 126. Therefore,
we define δVcent(r, ε) similarly to δVcent∗(r) as

δVcent(r, ε) = [Vcent(r, ε)]214Pb − [Vcent(r, ε)]208Pb. (32)

It is important to emphasise that δVcent(r, ε) depends not only
on the nuclear configuration considered, as δVcent∗(r), but
also on the energy of the orbital on which it acts. In Fig. 13,
we illustrate δVcent(r, ε) corresponding to the proton orbital
1s1/2 for the three configurations of 214Pb under consider-
ation. Upon comparing this figure with Fig. 11, it becomes
evident that the impact of relativistic corrections of order
1/M on δVcent(r, ε) is relatively small. As the energy of a
state approaches that of the Fermi level, its binding energy
decreases and the dependence of δVcent(r, ε) on this energy
becomes less relevant. To show the evolution of δVcent(r, ε)
from the 1s1/2 to the 1g9/2 orbital, we have depicted this
potential for several orbitals in Figs. 13, 14 and 15.

From the results of these figures, we can expect that, for
the NL3∗ parameter set, the i-conf will exhibit a more pro-
nounced kink than the g∗-conf, and the g∗-conf will display
a more prominent kink than the g-conf for the rms of the all
nodeless proton orbitals with the exception, perhaps, of the
1s orbital. (We will refer to this statement below). This orbital
is special because is highly localised in the internal part of the
nucleus, and its behaviour depends mainly on the character-
istics of the potential Vcent(r, ε) in this region. Orbitals with
nodes exhibit a more intricate behaviour (although under-
standable) than their nodeless counterparts. However, they
barely contribute to the kink [4,11].
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Fig. 13 Variation δVcent(r, ε) for protons in the 1p3/2 orbital when six
neutrons are added to the 208Pb nucleus to get 214Pb in the indicated
configurations. It has been used the NL3∗ parameter set

Fig. 14 The same as Fig. 13, but for the proton orbital 1d5/2

Fig. 15 The same as Fig. 13, but for the proton orbital 1g9/2

Fig. 16 The rms radii 〈ra〉 of the nodeless (n = 1) proton orbitals with
j = j+ for the lead isotopes are presented as a function of the mass
number A. For N > 126, the neutrons are assumed to occupy one of
the levels ν1i11/2 (i-conf.), ν2g9/2 (g-conf.) or ν2g7/2 (g∗-conf.). The
results correspond to the NL3∗ set. For the states with j = j−, the
values of 〈ra〉 follow a similar trend to those in the figure but are placed
slightly below them, since they are smaller, and are not depicted

To scrutinise the behaviour of the rms radii of nodeless
orbitals further, we present in Fig. 16 the rms radii of the
nodeless protons orbitals with j = j+ in lead isotopes, plot-
ted against the mass number A for the three configurations
considered in this work. It can be observed that the above
statement regarding the relative magnitude of the kinks in
the i-conf, g-conf and g∗-conf holds for all nodeless orbitals
but is more evident for orbitals with 1 ≤ la ≤ 3. The results
for the states with j = j− are similar to those with j = j+.

To better understand the behaviour of the rms radii 〈ra〉
depicted in Fig. 16, we have drawn in Figs. 17, 18 and 19 the
probability density variations, δρp,a(r), corresponding to the
proton orbitals considered in Figs. 13, 14 and 15 as the lead
isotope changes from 208Pb to 214Pb:

δρp,a(r) = [ρp,a(r)]214Pb − [ρp,a(r)]208Pb. (33)

It is worth noting that the variation of the mean-square
radius of the orbital a from 208Pb to 214Pb can be written as

δ〈r2
a 〉 ≡ δ〈a|r2|a〉 = 4π

∫ ∞

0
δρp,a(r)r

4dr. (34)
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Fig. 17 Variation of the proton probability density distribution δρ1s(r),
as defined by Eq. (33), when six neutrons are added to the 208Pb nucleus
to get 214Pb in the indicated configuration. The NL3∗ parameter set was
used

Fig. 18 The same as Fig. 17, but for the proton orbital 1d5/2

Fig. 19 The same as Fig. 17, but for the proton orbital 1g9/2

For the i-conf, the behaviour of δρp,a(r) is easy to under-
stand in all cases drawn in Figs. 17, 18 and 19 (similar results
are found in Fig. 4 of [23]). To minimise the potential energy,
the self-consistency procedure compels δρp,a(r) to decrease
in the inner region of the nucleus, where δVcent(r, ε) attains
its largest values, and to increase in the outer region, where
it is strongly negative. Consequently, the rms radius of all
nodeless proton orbitals increases as neutrons are added to
the lead nucleus in the 1i11/2 orbital for N > 126, as shown
in Fig. 16. (Note that the spherical element of volume corre-
sponding to dr is ∝ r2dr , and this effect is not considered
in Figs. 17, 18 and 19).

It seems clear that for a hypothetical nodeless proton
orbital with a density distribution ρp,a(r) reaching its max-
imum for r � 8 fm, the potential δVcent(r, ε) for the i-conf
would pull protons towards the inner part of the nucleus,
leading to δ〈r2

a 〉 < 0. Consequently, for higher values of
the orbital angular momentum, la , one can expect δ〈r2

a 〉 to
increase with A less rapidly as la increases. This trend is
subtly noticeable in Fig. 16 for the states with la ≥ 1.

For the g-conf and g∗-conf, the presence of the two wells
in δVcent(r, ε) adds complexity to the behaviour of δρp,a(r)
compared to the corresponding results for the i-conf.

For the g∗-conf, the influence of the external well prevails
over that of the internal one for all nodeless orbitals, as shown
in Figs. 17, 18 and 19, leading to a slight decrease in δρp,a(r)
in the inner part of the nucleus and a corresponding increase
in its outer part. As a result, the rms radius of all nodeless
proton orbitals increases slightly when neutrons are added to
the lead isotopes in the 2g7/2 level for N > 126, and a tiny
kink also appears for the orbitals with la ≤ 2 in the g∗-conf,
as shown in Fig. 16.

For the g-conf, the influence of the internal well, which
is deeper than the corresponding well in the g∗-conf, pre-
dominates over that of the external one for the inner nodeless
proton orbitals with la ≤ 2. Consequently, δρp,a(r) increases
in the vicinity of the internal well and decreases correspond-
ingly to the left and right of this well for the orbital 1s, and
only on the right for orbitals with la = 1, 2. Then, as A
increases from A = 208, 〈r1 s〉 remains practically constant,
while 〈r1p3/2〉 and 〈r1d5/2〉 slightly decrease, as depicted in
Fig. 16. The behaviour of δρp,1s(r) is special because, due
to the absence of the centrifugal barrier for the 1s orbital,
ρp,1s(r) attains relatively large values in the centre of nucleus.
Thus, the high proton density of this orbital in the inner part
of the nucleus enables a greater migration compared to other
orbitals, from the inner part of the nucleus towards a more
external region where δVcent(r, ε) reaches significant nega-
tive values. For orbitals with la ≥ 4, the influence of the
external potential well of δVcent(r, ε) predominates over that
of the internal one, causing the proton density δρp,a(r) to
rise near the external well at the expense of the more internal
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proton density. As a result, 〈ra〉 increases as A increases for
A > 208, although it is insufficient to form a kink.

Considering the preceding discussion relative to the g-
conf and g∗-conf, it is clear that for these configurations there
is a competition between the two wells of δVcent(r, ε), each
vying to attract protons.This rivalryweakens the ability of the
external well to attract protons in these two configurations.
As a result, the increase in the nuclear charge radius as A
increases in the lead isotope family is less pronounced for
the g-conf and g∗-conf than for the i-conf. This clarifies why
the i-conf exhibits a more pronounced kink than the g-conf
(and g∗-conf) in lead isotopes.

In Fig. 16, it can be seen that, for la = 0, the behaviour
of 〈ra〉 as a function of A for the g∗-conf approaches that of
the i-conf. However, it approaches that of the g-conf as la
increases. The behavior of 〈ra〉 for la = 0 is partly fortuitous
since δVcent(r, ε) differs significantly between the i-conf and
g∗-conf across the nuclear volume. Consequently, one would
expect a different behaviour of 〈ra〉 for any orbital in the i-
conf and g∗-conf. However, the convergence of the behaviour
of 〈ra〉 for the g∗-conf and g-conf as la increases can be
explained as follows. The density distribution corresponding
to nodeless proton orbitals with small values of la is high
in the inner part of the nucleus, where δVcent(r, ε) differs
significantly between the two configurations. Consequently,
as it happens, different behaviour of 〈ra〉 can be expected
for these orbitals in the g-conf and g∗-conf. However, as
the value of la for the proton orbital increases, the density
distribution for this orbital becomes more significant at larger
values of r , where δVcent(r, ε) becomes very similar for the
two configurations. Consequently, 〈ra〉 behaves similarly in
both the g-conf and g∗-conf.

3.2.4 The kink effect in relativistic models other than the
standard RMFA

We have found that within the RMFA with the NL3∗ param-
eter set, the small components of the valence neutron orbitals
in lead isotopes with N > 208 play an essential role in
the generation of the kink. It would be interesting to know
whether the role of these small components in other rela-
tivistic models is similar to the one found in our RMFA. We
discuss this topic below.

The magnitude of the small component Fa of an orbital
a is much smaller than that of the large component Ga

(see Fig. 5), and its contribution to the nuclear density is
much smaller than that of the Ga component. However, as
explained in Subsec. 3.2, the contribution of the Fa compo-
nent to the central potential Vcent(r, ε) in the Schödinger-like
equation (15) in our model has a factor approximately five
times greater than that of the Ga component. (This factor is,

roughly, the quotient [ g2
ω

m2
ω

− g2
ρ

m2
ρ

+ g2
σ

m∗
σ

2 ]/[ g2
ω

m2
ω

− g2
ρ

m2
ρ

− g2
σ

m∗
σ

2 ]

inside the nucleus, see Eq. (29) and Fig. 4). That is why its
contribution becomes relevant in the potential Vcent(r, ε).
This factor may change slightly from a specific parameter
set to another in the RMFA, but it is not arbitrary. The satu-
ration conditions of nuclear matter (saturation density, ρB0,
energy per particle and symmetry energy at the nuclear den-
sity ρB0 and compressibility modulus around ρB0) determine
the model parameters and, consequently, the prior quotient
and other model properties, such as, for example, the strength
of the SO interaction.

Additional parameters may come into play for alternative
realistic models that differ from the RMFA with the NL3∗
parameter set we have utilised, and the equations determining
the saturation conditions may undergo modifications com-
pared to ours. Nevertheless, the contribution of the small
component of the Dirac spinors to the potential Vcent(r, ε)
must still play an essential role for the saturation conditions
to be met. Consequently, it can be expected that the small
component of the valence neutron orbitals in the lead iso-
topes will continue to be essential in forming the kink for
any nuclear relativistic model.

We have verified, in particular, that in the RMFA with
the NL-Z parameter set [26], qualitatively similar results to
those reported in this work for the NL3∗ parameter set are
found. The minor differences can be attributed to the sig-
nificantly distinct masses of the corresponding effective σ -
mesons, leading to different ranges of the nucleon-nucleon
attractive force due to the scalar field in the two sets.

4 Conclusions

Within the framework of the relativistic mean field approxi-
mation (RMFA), we have shown that the kink in the charge
radii of lead isotopes is strongly related to the direct effects
of the small component of the sp Dirac spinors of the
valence neutrons on the central potential, Vcent(r, ε), in the
Schrödinger-like equation equivalent to the Dirac equation.
This is so, essentially, because the contributions to this poten-
tial from the σ -scalar and ω-vector fields, which depend
directly on the scalar and nucleon densities, are very large
and have opposite signs. These two facts combined greatly
increase the contribution of the small component of the Dirac
spinors, relative to that of the large component, to Vcent(r, ε).
This allows that the small component of the valence neu-
tron orbitals in lead isotopes with N > 208 plays an essen-
tial role in describing their nuclear charge radii according
to experimental data. The occupancy of these orbitals pro-
duces, through their small component, a repulsive potential
in the inner part of the nucleus that favours the increase of the
nuclear charge radius and, consequently, the kink formation.

Our results within the RMFA indicate that the impact of
the spin-orbit (SO) interaction on the kink through its influ-
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ence on the wave functions of the valence neutrons is rel-
atively minor in the case of the 1i orbitals, but it becomes
significant for the 2g orbitals. Our results also reveal that rela-
tivistic effects, arising from the small component of the Dirac
spinors, make the valence neutrons of a SO doublet more
efficient for the generation of the kink when they occupy the
orbital with j = l − 1/2 than when they occupy the orbital
with j = l+1/2. This is because the repulsive potential pro-
duced by the effect of the small component of those orbitals
in the inner part of the nucleus, which favours the increase
of the nuclear charge radius, is stronger and takes relevant
values deeper within the nucleus for the orbital with j = j−
than with j = j+. This fact essentially explains why the for-
mer is more kinky than the latter, despite both having very
similar radial big components and rms radii.

We have also found that the self-consistent or rearrange-
ment indirect effects of the valence neutrons on lead isotopes
induce significant changes in the proton central potential
Vcent(r, ε) that notably favour the increase in the magnitude
of the kink.

Although we have focused our study on the lead isotopic
family, the ideas developed in this work can be applied to any
other isotopic family. However, the model may not necessar-
ily explain the observed behaviour of their nuclear charge
radii.

The key to the success of the relativistic models in generat-
ing the experimentally observable kink effect in lead isotopes
is the essential role that the small components of the sp Dirac
spinors play in the sp central potential (� S(r) + V (r)) of
the Dirac and Schrödinger-like equations. Consequently, the
conclusions reached in this work using the RMFA and the
NL3∗ parameter set can be considered qualitatively valid,
quite generally, for all usual relativistic models, and it can
be stated that the kink effect in relativistic models has an
intrinsic relativistic origin.
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