Skip to main content
Log in

Impact of nuclear deformation on collective flow observables in relativistic U+U collisions

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A Multi-Phase Transport (AMPT) model is used to investigate the efficacy of several flow observables to constrain the initial-state deformation of the Uranium nuclei in U\(+\)U collisions at nucleon–nucleon center-of-mass energy \(\sqrt{\textit{s}_{NN}}\) = 193 GeV. The multiparticle azimuthal cumulant method is used to investigate the sensitivity of (I) a set of quantities that are sensitive to both initial- and final-state effects as well as (II) a set of dimensionless quantities that are more sensitive to initial-state effects to the Uranium nuclei quadrupole shape deformation. We find that the combined use of the flow harmonics, flow fluctuations and correlations, linear and non-linear flow correlations to the quadrangular flow harmonic, and the correlations between elliptic flow and the mean-transverse momentum could serve to constrain the nuclear deformation of the Uranium nuclei. Therefore, a comprehensive set of measurements of such observables can provide a quantifying tool for the quadrupole shape deformation via data-model comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: ...].

References

  1. E. V. Shuryak, Sov. J. Nucl. Phys. 28, 408 ( 1978) https://doi.org/10.1016/0370-2693(78)90370-2

  2. E. V. Shuryak, Phys. Rept. 61, 71 ( 1980)https://doi.org/10.1016/0370-1573(80)90105-2

  3. B. Muller, J. Schukraft, B. Wyslouch, Ann. Rev. Nucl. Part. Sci. 62, 361 (2012). https://doi.org/10.1146/annurev-nucl-102711-094910. arXiv:1202.3233 [hep-ex]

    Article  ADS  Google Scholar 

  4. P. Danielewicz, R.A. Lacey, P. Gossiaux, C. Pinkenburg, P. Chung, J. Alexander, R. McGrath, Phys. Rev. Lett. 81, 2438 (1998). https://doi.org/10.1103/PhysRevLett.81.2438. arXiv:nucl-th/9803047

    Article  ADS  Google Scholar 

  5. K. Ackermann et al. ( STAR), Phys. Rev. Lett. 86, 402 ( 2001a), arXiv:nucl-ex/0009011https://doi.org/10.1103/PhysRevLett.86.402

  6. K. Adcox et al. ( PHENIX), Phys. Rev. Lett. 89, 212301 ( 2002a), arXiv:nucl-ex/0204005 [nucl-ex] https://doi.org/10.1103/PhysRevLett.89.212301

  7. U. W. Heinz and P. F. Kolb, Statistical QCD. Proceedings, International Symposium, Bielefeld, Germany, August 26-30, 2001, Nucl. Phys. A702, 269 ( 2002), arXiv:hep-ph/0111075 [hep-ph] https://doi.org/10.1016/S0375-9474(02)00714-5

  8. P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen, S.A. Voloshin, Phys. Lett. B 503, 58 (2001)

    Article  ADS  Google Scholar 

  9. T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002). https://doi.org/10.1103/PhysRevC.66.054905. arXiv:nucl-th/0205043

    Article  ADS  Google Scholar 

  10. E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004). https://doi.org/10.1016/j.ppnp.2004.02.025. arXiv:hep-ph/0312227

    Article  ADS  Google Scholar 

  11. T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett. B 636, 299 (2006). https://doi.org/10.1016/j.physletb.2006.03.060. arXiv:nucl-th/0511046 [nucl-th]

    Article  ADS  Google Scholar 

  12. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007). https://doi.org/10.1103/PhysRevLett.99.172301. arXiv:0706.1522 [nucl-th]

    Article  ADS  Google Scholar 

  13. M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008). https://doi.org/10.1103/PhysRevC.78.034915, https://doi.org/10.1103/PhysRevC.79.039903. arXiv:0804.4015 [nucl-th]

  14. P. Bozek, Phys. Rev. C 81, 034909 (2010). https://doi.org/10.1103/PhysRevC.81.034909. arXiv:0911.2397 [nucl-th]

    Article  ADS  Google Scholar 

  15. H. Song, S. A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 106, 192301 ( 2011), [Erratum: Phys. Rev. Lett.109,139904(2012)], arXiv:1011.2783 [nucl-th] https://doi.org/10.1103/PhysRevLett.106.192301, https://doi.org/10.1103/PhysRevLett.109.139904

  16. J. Qian, U.W. Heinz, J. Liu, Phys. Rev. C 93, 064901 (2016). https://doi.org/10.1103/PhysRevC.93.064901. arXiv:1602.02813 [nucl-th]

    Article  ADS  Google Scholar 

  17. B. Schenke, S. Jeon, C. Gale, Phys. Lett. B 702, 59 (2011). https://doi.org/10.1016/j.physletb.2011.06.065. arXiv:1102.0575 [hep-ph]

    Article  ADS  Google Scholar 

  18. D. Teaney, L. Yan, Phys. Rev. C 86, 044908 (2012). https://doi.org/10.1103/PhysRevC.86.044908. arXiv:1206.1905 [nucl-th]

    Article  ADS  Google Scholar 

  19. F.G. Gardim, F. Grassi, M. Luzum, J.-Y. Ollitrault, Phys. Rev. Lett. 109, 202302 (2012). https://doi.org/10.1103/PhysRevLett.109.202302. arXiv:1203.2882 [nucl-th]

    Article  ADS  Google Scholar 

  20. R. A. Lacey, D. Reynolds, A. Taranenko, N. N. Ajitanand, J. M. Alexander, F.-H. Liu, Y. Gu, and A. Mwai, J. Phys. G43, 10LT01 ( 2016), arXiv:1311.1728 [nucl-ex] https://doi.org/10.1088/0954-3899/43/10/10LT01

  21. N. Magdy, X. Sun, Z. Ye, O. Evdokimov, R. Lacey, Universe 6, 146 (2020). https://doi.org/10.3390/universe6090146. arXiv:2009.02734 [nucl-ex]

    Article  ADS  Google Scholar 

  22. C. Adler et al. ( STAR), Phys. Rev. Lett. 90, 032301 ( 2003), arXiv:nucl-ex/0206006https://doi.org/10.1103/PhysRevLett.90.032301

  23. C. Adler et al. ( STAR), Phys. Rev. Lett. 87, 182301 ( 2001), arXiv:nucl-ex/0107003https://doi.org/10.1103/PhysRevLett.87.182301

  24. K. H. Ackermann et al. ( STAR), Phys. Rev. Lett. 86, 402 ( 2001b), arXiv:nucl-ex/0009011https://doi.org/10.1103/PhysRevLett.86.402

  25. B. Alver et al. ( PHOBOS), https://doi.org/10.1103/PhysRevC.81.024904 Phys. Rev. C 81, 024904 ( 2010a), arXiv:0812.1172 [nucl-ex] https://doi.org/10.1103/PhysRevC.81.024904

  26. A. Adare et al. ( PHENIX), https://doi.org/10.1103/PhysRevC.99.024903 Phys. Rev. C 99, 024903 ( 2019a), arXiv:1804.10024 [nucl-ex]

  27. A. Adare et al. ( PHENIX), Phys. Rev. C 99, 054903 ( 2019b), arXiv:1803.01749 [hep-ex] https://doi.org/10.1103/PhysRevC.99.054903

  28. K. Adcox et al. ( PHENIX), Phys. Rev. Lett. 89, 212301 ( 2002b), arXiv:nucl-ex/0204005https://doi.org/10.1103/PhysRevLett.89.212301

  29. A. Adare et al. ( PHENIX), Phys. Rev. C 93, 051902 ( 2016), arXiv:1412.1038 [nucl-ex] https://doi.org/10.1103/PhysRevC.93.051902

  30. B. Alver et al. ( PHOBOS), Phys. Rev. C 81, 034915 ( 2010b), arXiv:1002.0534 [nucl-ex] https://doi.org/10.1103/PhysRevC.81.034915

  31. B. Alver et al. ( PHOBOS), Phys. Rev. Lett. 104, 142301 ( 2010c), arXiv:nucl-ex/0702036https://doi.org/10.1103/PhysRevLett.104.142301

  32. B. Alver et al. ( PHOBOS), Phys. Rev. Lett. 98, 242302 ( 2007), arXiv:nucl-ex/0610037https://doi.org/10.1103/PhysRevLett.98.242302

  33. B. B. Back et al. ( PHOBOS), Phys. Rev. Lett. 97, 012301 ( 2006), arXiv:nucl-ex/0511045https://doi.org/10.1103/PhysRevLett.97.012301

  34. A. M. Sirunyan et al. ( CMS), Eur. Phys. J. C 80, 534 ( 2020), arXiv:1910.08789 [hep-ex] https://doi.org/10.1140/epjc/s10052-020-7834-9

  35. N. Magdy, J. Phys. G 49, 015105 (2022). https://doi.org/10.1088/1361-6471/ac38c3. arXiv:2106.09484 [nucl-th]

    Article  ADS  Google Scholar 

  36. S. Acharya et al. ( ALICE), Phys. Lett. B 818, 136354 ( 2021a), arXiv:2102.12180 [nucl-ex]https://doi.org/10.1016/j.physletb.2021.136354

  37. A. M. Sirunyan et al. ( CMS), Phys. Rev. C 100, 044902 ( 2019), arXiv:1901.07997 [hep-ex] https://doi.org/10.1103/PhysRevC.100.044902

  38. N. Magdy, Phys. Rev. C 106, 044911 (2022). https://doi.org/10.1103/PhysRevC.106.044911. arXiv:2207.04530 [nucl-th]

    Article  ADS  Google Scholar 

  39. M. Aaboud et al. ( ATLAS), Eur. Phys. J. C 77, 428 ( 2017), arXiv:1705.04176 [hep-ex] https://doi.org/10.1140/epjc/s10052-017-4988-1

  40. M. Aaboud et al. ( ATLAS), Phys. Lett. B 789, 444 ( 2019), arXiv:1807.02012 [nucl-ex] https://doi.org/10.1016/j.physletb.2018.11.065

  41. M. Aaboud et al. ( ATLAS), Eur. Phys. J. C 78, 142 ( 2018), arXiv:1709.02301 [nucl-ex] https://doi.org/10.1140/epjc/s10052-018-5605-7

  42. J. Jia, Phys. Rev. C 105, 014905 (2022). https://doi.org/10.1103/PhysRevC.105.014905

    Article  ADS  Google Scholar 

  43. G. Giacalone, J. Jia, C. Zhang, Phys. Rev. Lett. 127, 242301 (2021). https://doi.org/10.1103/PhysRevLett.127.242301

    Article  ADS  Google Scholar 

  44. Q. Shou, Y. Ma, P. Sorensen, A. Tang, F. Videbæk, H. Wang, Phys. Lett. B 749, 215 (2015). https://doi.org/10.1016/j.physletb.2015.07.078

    Article  ADS  Google Scholar 

  45. P. Filip, Phys. Atom. Nucl. 71, 1609 (2008). https://doi.org/10.1134/S1063778808090172

    Article  ADS  Google Scholar 

  46. B. Bally, M. Bender, G. Giacalone, V. Somà, Phys. Rev. Lett. 128, 082301 (2022). https://doi.org/10.1103/PhysRevLett.128.082301

    Article  ADS  Google Scholar 

  47. M. Rybczynski, W. Broniowski, G. Stefanek, Phys. Rev. C 87, 044908 (2013). https://doi.org/10.1103/PhysRevC.87.044908

    Article  ADS  Google Scholar 

  48. C. Zhang, S. Bhatta, J. Jia, ( 2022), arXiv:2206.01943 [nucl-th]

  49. J. Jia, C.-J. Zhang, (2021), arXiv:2111.15559 [nucl-th]

  50. C. Zhang, J. Jia, Phys. Rev. Lett. 128, 022301 (2022). https://doi.org/10.1103/PhysRevLett.128.022301

    Article  ADS  Google Scholar 

  51. J. Jia, S. Huang, C. Zhang, Phys. Rev. C 105, 014906 (2022). https://doi.org/10.1103/PhysRevC.105.014906

    Article  ADS  Google Scholar 

  52. L. Adamczyk et al. ( STAR), Phys. Rev. Lett. 115, 222301 ( 2015) https://doi.org/10.1103/PhysRevLett.115.222301

  53. ( 2022), arXiv:2204.10240 [nucl-ex]

  54. S. Acharya et al. ( ALICE), Phys. Lett. B 784, 82 ( 2018), arXiv:1805.01832 [nucl-ex] https://doi.org/10.1016/j.physletb.2018.06.059

  55. H. Niemi, G.S. Denicol, H. Holopainen, P. Huovinen, Phys. Rev. C 87, 054901 (2013). https://doi.org/10.1103/PhysRevC.87.054901. arXiv:1212.1008 [nucl-th]

    Article  ADS  Google Scholar 

  56. F.G. Gardim, J. Noronha-Hostler, M. Luzum, F. Grassi, Phys. Rev. C 91, 034902 (2015). https://doi.org/10.1103/PhysRevC.91.034902. arXiv:1411.2574 [nucl-th]

    Article  ADS  Google Scholar 

  57. J. Fu, Phys. Rev. C92, 024904 ( 2015) https://doi.org/10.1103/PhysRevC.92.024904

  58. H. Holopainen, H. Niemi, K.J. Eskola, Phys. Rev. C 83, 034901 (2011). https://doi.org/10.1103/PhysRevC.83.034901. arXiv:1007.0368 [hep-ph]

    Article  ADS  Google Scholar 

  59. G.-Y. Qin, H. Petersen, S.A. Bass, B. Muller, Phys. Rev. C 82, 064903 (2010). https://doi.org/10.1103/PhysRevC.82.064903. arXiv:1009.1847 [nucl-th]

    Article  ADS  Google Scholar 

  60. Z. Qiu, U.W. Heinz, Phys. Rev. C 84, 024911 (2011). https://doi.org/10.1103/PhysRevC.84.024911. arXiv:1104.0650 [nucl-th]

    Article  ADS  Google Scholar 

  61. C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 110, 012302 (2013). https://doi.org/10.1103/PhysRevLett.110.012302. arXiv:1209.6330 [nucl-th]

    Article  ADS  Google Scholar 

  62. P. Liu, R. A. Lacey, ( 2018), arXiv:1802.06595 [nucl-ex]

  63. J. Adam et al. ( STAR), Phys. Rev. Lett. 122, 172301 ( 2019a), arXiv:1901.08155 [nucl-ex] https://doi.org/10.1103/PhysRevLett.122.172301

  64. R.S. Bhalerao, J.-Y. Ollitrault, S. Pal, Phys. Lett. B 742, 94 (2015). https://doi.org/10.1016/j.physletb.2015.01.019. arXiv:1411.5160 [nucl-th]

    Article  ADS  Google Scholar 

  65. L. Yan, J.-Y. Ollitrault, Phys. Lett. B 744, 82 (2015). https://doi.org/10.1016/j.physletb.2015.03.040. arXiv:1502.02502 [nucl-th]

    Article  ADS  Google Scholar 

  66. G. Aad et al. ( ATLAS), Phys. Rev. C 90, 024905 ( 2014), arXiv:1403.0489 [hep-ex] https://doi.org/10.1103/PhysRevC.90.024905

  67. A. Bilandzic, C.H. Christensen, K. Gulbrandsen, A. Hansen, Y. Zhou, Phys. Rev. C 89, 064904 (2014). https://doi.org/10.1103/PhysRevC.89.064904. arXiv:1312.3572 [nucl-ex]

    Article  ADS  Google Scholar 

  68. G. Aad et al. ( ATLAS), Phys. Rev. C92, 034903 ( 2015), arXiv:1504.01289 [hep-ex] https://doi.org/10.1103/PhysRevC.92.034903

  69. J. Adam et al. ( ALICE), Phys. Rev. Lett. 117, 182301 ( 2016), arXiv:1604.07663 [nucl-ex]https://doi.org/10.1103/PhysRevLett.117.182301

  70. J. Adam et al. ( STAR), Phys. Lett. B783, 459 ( 2018), arXiv:1803.03876 [nucl-ex] https://doi.org/10.1016/j.physletb.2018.05.076

  71. Y. Zhou, Adv. High Energy Phys. 2016, 9365637 (2016). https://doi.org/10.1155/2016/9365637. arXiv:1607.05613 [nucl-ex]

    Article  Google Scholar 

  72. Z. Qiu, U. Heinz, Phys. Lett. B 717, 261 (2012). https://doi.org/10.1016/j.physletb.2012.09.030. arXiv:1208.1200 [nucl-th]

    Article  ADS  Google Scholar 

  73. D. Teaney, L. Yan, Phys. Rev. C 90, 024902 (2014). https://doi.org/10.1103/PhysRevC.90.024902. arXiv:1312.3689 [nucl-th]

    Article  ADS  Google Scholar 

  74. H. Niemi, K.J. Eskola, R. Paatelainen, Phys. Rev. C 93, 024907 (2016). https://doi.org/10.1103/PhysRevC.93.024907. arXiv:1505.02677 [hep-ph]

    Article  ADS  Google Scholar 

  75. Y. Zhou, K. Xiao, Z. Feng, F. Liu, R. Snellings, Phys. Rev. C 93, 034909 (2016). https://doi.org/10.1103/PhysRevC.93.034909. arXiv:1508.03306 [nucl-ex]

    Article  ADS  Google Scholar 

  76. P. Bozek, Phys. Rev. C 93, 044908 (2016). https://doi.org/10.1103/PhysRevC.93.044908

    Article  ADS  Google Scholar 

  77. G. Giacalone, J. Noronha-Hostler, J.-Y. Ollitrault, Phys. Rev. C 95, 054910 (2017). https://doi.org/10.1103/PhysRevC.95.054910

    Article  ADS  Google Scholar 

  78. G. Giacalone, B. Schenke, C. Shen, Phys. Rev. Lett. 125, 192301 (2020). https://doi.org/10.1103/PhysRevLett.125.192301. arXiv:2006.15721 [nucl-th]

    Article  ADS  Google Scholar 

  79. P. Bozek, H. Mehrabpour, Phys. Rev. C 101, 064902 (2020). https://doi.org/10.1103/PhysRevC.101.064902. arXiv:2002.08832 [nucl-th]

    Article  ADS  Google Scholar 

  80. B. Schenke, C. Shen, D. Teaney, Phys. Rev. C 102, 034905 (2020). https://doi.org/10.1103/PhysRevC.102.034905. arXiv:2004.00690 [nucl-th]

    Article  ADS  Google Scholar 

  81. G. Giacalone, F.G. Gardim, J. Noronha-Hostler, J.-Y. Ollitrault, Phys. Rev. C 103, 024909 (2021). https://doi.org/10.1103/PhysRevC.103.024909. arXiv:2004.01765 [nucl-th]

    Article  ADS  Google Scholar 

  82. S.H. Lim, J.L. Nagle, Phys. Rev. C 103, 064906 (2021). https://doi.org/10.1103/PhysRevC.103.064906. arXiv:2103.01348 [nucl-th]

    Article  ADS  Google Scholar 

  83. T. A. Collaboration ( ATLAS), (2022), arXiv:2205.00039 [nucl-ex]

  84. N. Magdy, R.A. Lacey, Phys. Lett. B 821, 136625 (2021). https://doi.org/10.1016/j.physletb.2021.136625. arXiv:2105.04879 [nucl-th]

    Article  Google Scholar 

  85. S. Acharya et al. ( ALICE), ( 2021b), arXiv:2111.06106 [nucl-ex]

  86. G. Giacalone, Phys. Rev. C 99, 024910 (2019). https://doi.org/10.1103/PhysRevC.99.024910

    Article  ADS  Google Scholar 

  87. G. Giacalone, B. Schenke, C. Shen, ( 2021c), arXiv:2111.02908 [nucl-th]

  88. D. Liyanage, D. Everett, C. Chattopadhyay, U. Heinz, (2022), arXiv:2205.00964 [nucl-th]

  89. Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005). https://doi.org/10.1103/PhysRevC.72.064901. arXiv:nucl-th/0411110 [nucl-th]

    Article  ADS  Google Scholar 

  90. G.-L. Ma, Z.-W. Lin, Phys. Rev. C 93, 054911 (2016). https://doi.org/10.1103/PhysRevC.93.054911. arXiv:1601.08160 [nucl-th]

    Article  ADS  Google Scholar 

  91. M.R. Haque, M. Nasim, B. Mohanty, J. Phys. G 46, 085104 (2019). https://doi.org/10.1088/1361-6471/ab2ba4

    Article  ADS  Google Scholar 

  92. P.P. Bhaduri, S. Chattopadhyay, Phys. Rev. C 81, 034906 (2010). https://doi.org/10.1103/PhysRevC.81.034906. arXiv:1002.4100 [hep-ph]

    Article  ADS  Google Scholar 

  93. M. Nasim, L. Kumar, P.K. Netrakanti, B. Mohanty, Phys. Rev. C 82, 054908 (2010). https://doi.org/10.1103/PhysRevC.82.054908. arXiv:1010.5196 [nucl-ex]

    Article  ADS  Google Scholar 

  94. J. Xu, C.M. Ko, Phys. Rev. C 83, 021903 (2011). https://doi.org/10.1103/PhysRevC.83.021903. arXiv:1011.3750 [nucl-th]

    Article  ADS  Google Scholar 

  95. N. Magdy, O. Evdokimov, R.A. Lacey, J. Phys. G 48, 025101 (2020). https://doi.org/10.1088/1361-6471/abcb59. arXiv:2002.04583 [nucl-ex]

    Article  ADS  Google Scholar 

  96. Y. Guo, S. Shi, S. Feng, J. Liao, Phys. Lett. B 798, 134929 (2019). https://doi.org/10.1016/j.physletb.2019.134929. arXiv:1905.12613 [nucl-th]

    Article  Google Scholar 

  97. B. Zhang, Comput. Phys. Commun. 109, 193 (1998). https://doi.org/10.1016/S0010-4655(98)00010-1. arXiv:nucl-th/9709009 [nucl-th]

  98. X.-N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991). https://doi.org/10.1103/PhysRevD.44.3501

    Article  ADS  Google Scholar 

  99. M. Gyulassy, X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994). https://doi.org/10.1016/0010-4655(94)90057-4. arXiv:nucl-th/9502021 [nucl-th]

    Article  ADS  Google Scholar 

  100. B.-A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995). https://doi.org/10.1103/PhysRevC.52.2037. arXiv:nucl-th/9505016 [nucl-th]

    Article  ADS  Google Scholar 

  101. J. Xu, C.M. Ko, Phys. Rev. C 83, 034904 (2011). https://doi.org/10.1103/PhysRevC.83.034904. arXiv:1101.2231 [nucl-th]

    Article  ADS  Google Scholar 

  102. M. Nasim, Phys. Rev. C 95, 034905 (2017). https://doi.org/10.1103/PhysRevC.95.034905. arXiv:1612.01066 [nucl-ex]

    Article  ADS  Google Scholar 

  103. K. Hagino, N.W. Lwin, M. Yamagami, Phys. Rev. C 74, 017310 (2006). https://doi.org/10.1103/PhysRevC.74.017310. arXiv:nucl-th/0604048

    Article  ADS  Google Scholar 

  104. H. De Vries, C. De Jager, C. De Vries, Atomic Data Nuclear Data Tables 36, 495 (1987). https://doi.org/10.1016/0092-640X(87)90013-1

    Article  ADS  Google Scholar 

  105. P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, Atom. Data Nucl. Data Tabl. 59, 185 (1995). https://doi.org/10.1006/adnd.1995.1002. arXiv:nucl-th/9308022

    Article  ADS  Google Scholar 

  106. N. Borghini, P.M. Dinh, J.-Y. Ollitrault, Phys. Rev. C 63, 054906 (2001). https://doi.org/10.1103/PhysRevC.63.054906. arXiv:nucl-th/0007063 [nucl-th]

    Article  ADS  Google Scholar 

  107. N. Borghini, P.M. Dinh, J.-Y. Ollitrault, Phys. Rev. C 64, 054901 (2001). https://doi.org/10.1103/PhysRevC.64.054901. arXiv:nucl-th/0105040 [nucl-th]

    Article  ADS  Google Scholar 

  108. A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83, 044913 (2011). https://doi.org/10.1103/PhysRevC.83.044913. arXiv:1010.0233 [nucl-ex]

    Article  ADS  Google Scholar 

  109. J. Jia, M. Zhou, A. Trzupek, Phys. Rev. C 96, 034906 (2017). https://doi.org/10.1103/PhysRevC.96.034906. arXiv:1701.03830 [nucl-th]

    Article  ADS  Google Scholar 

  110. R.S. Bhalerao, J.-Y. Ollitrault, S. Pal, Phys. Rev. C 88, 024909 (2013). https://doi.org/10.1103/PhysRevC.88.024909. arXiv:1307.0980 [nucl-th]

    Article  ADS  Google Scholar 

  111. S. Acharya et al. ( ALICE), Phys. Lett. B773, 68 ( 2017) https://doi.org/10.1016/j.physletb.2017.07.060

  112. B. B. Abelev et al. ( ALICE), Eur. Phys. J. C 74, 3077 ( 2014) https://doi.org/10.1140/epjc/s10052-014-3077-y

  113. S. Acharya et al. ( ALICE), Phys. Rev. C 100, 044903 ( 2019), arXiv:1805.04422 [nucl-ex] https://doi.org/10.1103/PhysRevC.100.044903

  114. G. Aad et al. ( ATLAS), Eur. Phys. J. C 79, 985 ( 2019) https://doi.org/10.1140/epjc/s10052-019-7489-6

  115. C. Zhang, A. Behera, S. Bhatta, J. Jia, ( 2021), arXiv:2102.05200 [nucl-th]

  116. (2021)

  117. J. Adam et al. ( STAR), Phys. Rev. Lett. 122, 172301 ( 2019b), arXiv:1901.08155 [nucl-ex] https://doi.org/10.1103/PhysRevLett.122.172301

  118. M. Abdallah et al. ( STAR), ( 2022), arXiv:2201.10365 [nucl-ex]

  119. G. Giacalone, J. Jia, V. Somà, Phys. Rev. C 104, L041903 (2021). https://doi.org/10.1103/PhysRevC.104.L041903. arXiv:2102.08158 [nucl-th]

    Article  ADS  Google Scholar 

  120. S. Manly et al. ( PHOBOS), Proceedings, 18th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2005): Budapest, Hungary, August 4-9, 2005, Nucl. Phys. A774, 523 ( 2006), arXiv:nucl-ex/0510031 [nucl-ex] https://doi.org/10.1016/j.nuclphysa.2006.06.079

  121. S. Rao, M. Sievert, J. Noronha-Hostler, Phys. Rev. C 103, 034910 (2021). https://doi.org/10.1103/PhysRevC.103.034910. arXiv:1910.03677 [nucl-th]

    Article  ADS  Google Scholar 

  122. G. Giacalone, Phys. Rev. Lett. 124, 202301 (2020). https://doi.org/10.1103/PhysRevLett.124.202301. arXiv:1910.04673 [nucl-th]

    Article  ADS  Google Scholar 

  123. G. Giacalone, Phys. Rev. C 102, 024901 (2020). https://doi.org/10.1103/PhysRevC.102.024901

    Article  ADS  Google Scholar 

  124. J. Jia, Phys. Rev. C 105, 044905 (2022). https://doi.org/10.1103/PhysRevC.105.044905. arXiv:2109.00604 [nucl-th]

    Article  ADS  Google Scholar 

  125. C. Zhang ( STAR), in 10th International Conference on New Frontiers in Physics ( 2022) arXiv:2203.13106 [nucl-ex]

  126. P. Bozek, W. Broniowski, Phys. Rev. C 85, 044910 (2012). https://doi.org/10.1103/PhysRevC.85.044910. arXiv:1203.1810 [nucl-th]

    Article  ADS  Google Scholar 

  127. N. Magdy, P. Parfenov, A. Taranenko, I. Karpenko, R.A. Lacey, Phys. Rev. C 105, 044901 (2022). https://doi.org/10.1103/PhysRevC.105.044901. arXiv:2111.07406 [nucl-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Roy Lacey, Giuliano Giacalone, Jiangyong Jia, and Guo-Liang Ma for the useful discussions and for pointing out important references. This research is supported by the US Department of Energy, Office of Nuclear Physics (DOE NP), under contracts DE-FG02-87ER40331.A008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niseem Magdy.

Additional information

Communicated by Silvia Masciocchi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magdy, N. Impact of nuclear deformation on collective flow observables in relativistic U+U collisions. Eur. Phys. J. A 59, 64 (2023). https://doi.org/10.1140/epja/s10050-023-00982-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00982-0

Navigation