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Abstract I consider the chromomagnetic vacuum in SU(2).
The effective Lagrangian in one loop approximation is known
to have a minimum below zero which results in a sponta-
neously generated magnetic field. However, this minimum is
not stable; the effective action has an imaginary part. Over
the past decades, there were many attempts to handle this
situation which all were at some point unsatisfactory. I pro-
pose an idea for a new solution by assuming that the tachy-
onic mode, at low temperature, acquires a condensate and,
as a result, undergoes a phase transition like in the Higgs
model. I consider the approximation where all gluon modes
are dropped except for the tachyonic one. For this mode, we
have a O(2)-model with quartic self-interaction in two dimen-
sions. I apply the CJT (2PI) formalism in Hartree approxima-
tion. As a result, at zero and low temperatures, a minimum of
the effective action at a certain value of the condensate and
of the background fields is observed and there is no imagi-
nary part. Raising the temperature, this minimum becomes
shallower and at a critical temperature, the perturbative state
becomes that with lower effective potential; the symmetry
is restored. The physical interpretation says that the unsta-
ble mode creates tachyons until these come into equilibrium
with their repulsive self-interaction and form a condensate.
The relation to the Mermin-Wagner theorem is discussed.

1 Introduction

Beginning with the paper [1], a constant chromomagnetic
background field is discussed as a candidate for the ground-
state (vacuum state) of Quantum Chromodynamics (QCD),
at least in the sense of a first approximation. The gluonic part
of the Lagrangian
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LQCD = −1

4

(
Fa

μν

)2 + quarks, (1)

with the field strength

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + g f abc Ab

μA
c
ν (2)

(a-color index of SU(N)) is the well-known non-Abelian
generalization of Quantum Electrodynamics (QED). A back-
ground field Ba

μ is introduced by the shift

Aa
μ → Aa

μ + Ba
μ. (3)

A constant Abelian background field is, for example,

Ba
μ = B

2
δa3 (−gμ1x2 + gμ2x1

)
. (4)

The effective potential following from the generalization of
the Heisenberg-Euler Lagrangian of QED to QCD reads

Vef f = B2

2
+ 11N (gB)2

96π2

(
ln

(gB)2

μ4 − 1

2

)
− i

N (gB)2

16π

(5)

(for SU(N)). Now, as observed in [1], the real part of (5) has
a minimum at finite B,

gB|min = μ2 exp

(
−24π2

11g2

)
,

Vef f |min
= −11μ4

96π2 exp

(
−48π2

11g2

)
, (6)

(for SU(2)) and the effective potential takes negative values
at this minimum. As a consequence, the system will enter the
state with a colormagnetic background field (6). Thus, such
a field will be created spontaneously and form a kind of con-
densate. This state would be a new, nonperturbative vacuum
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state of the theory. It is called chromomagnetic vacuum, and
also Savvidy vacuum.

As well known, the coefficient in front of the logarithm
in (5) is the first coefficient of the beta function of QCD,
bYM

0 = 11
8π2

N
3 , and its sign, which is responsible for the

minimum (it is opposite to the case of QED), is the sign of
asymptotic freedom.

The spectrum, belonging to the linearized part of the
Lagrangian (1) in the background (4), reads

p2
0 = p2

3 + gB(2n + 1 + 2s), (7)

where p3 is the momentum parallel to the field, n =
0, 1, 2, . . . numbers the Landau levels and s = ±1 is the
spin projection. Soon after [1], in [2] and [3] it was observed
that the effective potential (5) has an imaginary part. It fol-
lows from the interaction of the magnetic moment (it is twice
that of the electron) with the background field and overturns
the zero-point energy of the lowest Landau level for n = 0
and s = −1. The corresponding one particle energy

p2
0 = p2

3 − gB, (8)

becomes imaginary and it is responsible for the imaginary
part in (5). In the spectrum (8), the color magnetic contribu-
tion is like a negative mass square,

m2 = −gB < 0. (9)

The corresponding state is unstable (in opposite to all other
states) and frequently called tachyonic state. As a conse-
quence of the imaginary part, the chromomagnetic vacuum
is not stable and, once appeared, would decay or otherwise
turn into some different state. The problem with the stability
was the main obstacle to considering the chromomagnetic
vacuum as a good candidate for the vacuum of QCD

It is interesting to mention that the stable modes, i.e., all
modes except for n = 0, s = −1, also result in an effective
potential having a minimum below zero. Formally, one has
to substitute 11 → 5 in (5) in front of the logarithm. So that
the stable modes contribute approximately one half and the
unstable mode the other half (with 11 → 6) to the logarithmic
contribution in (5) and to the potential in the minimum in (6).

In the decades since [2], we have seen a large number
of attempts to remove or interpret the imaginary part in (5)
or to see what results from the decay of the chromomagnetic
vacuum. All these attempts are in one or another sense unsat-
isfactory. I mention here some attempts to demonstrate the
genesis of the ideas.

The first, and a most popular attempt was the Copenhagen
vacuum, [4], which was later abandoned. In [5] (and succes-
sors) the idea was spelled out that the self-interaction of the
tachyonic mode, which is a consequence of the non-Abelian

structure of the theory, should remove the imaginary part like
it happens with the quartic oscillator in quantum mechan-
ics. Thereby as a starting point, the self-dual background
was chosen whose electric component may be considered
as a kind of regularization. However, the calculations were
oversimplified by converting the functional integral into an
ordinary integral (as mentioned in [6] after eq. (28)). In [7],
an attempt was undertaken to sum ring (or, daisy) diagrams
using the gluon polarization tensor in some tractable approx-
imation. The common outcome from these papers was the
conclusion that the imaginary part of the effective potential
goes away and its real part remains without change. However,
these results did not receive much attention and, together
with a large number of different attempts, did not result in an
acceptable approximation to the theory of the QCD vacuum.

In [8] an attempt was undertaken to find a minimum of
the effective potential when in addition to the chromomag-
netic background also a constant A0-field (Polyakov loop)
is present. This work was motivated by a lattice calculation,
[9], where a minimum in the (A0, B)-plane was seen (with no
imaginary part). However, in the two-loop calculation done
in [8], a very unnatural behavior of the real part of the effec-
tive potential in the (A0, B)-plane was found. This behavior
puts into question the above-mentioned conclusion that when
summing ring diagrams, the real part stays in place.

In the present paper, I suggest an idea for a solution of the
problem with the imaginary part. It consists in the application
of the Higgs mechanism to the unstable (tachyonic) mode.
In fact, this idea is not new, but it was so far not worked out
properly. The present work is intended to make a new step in
this direction.

I define the unstable mode by its quantum numbers p0, p3,
and n = 0, s = −1. This way, it represents a complex scalar
field, ψ(x0, x3), (for details see below) with negative mass
square (9) and a quartic self-interaction. The corresponding
Lagrangian reads

L = 1

2
ψ∗ (

∂2
0 − ∂2

3 − m2
)

ψ − λ(ψ∗ψ)2 (10)

(dropping all arguments for the moment). The color mag-
netic background field enters through the mass square (9) and
through the vertex factor which will be derived in the next
section. This Lagrangian represents a complex scalar field in
two dimensions. It can be understood as an approximation
to the QCD Lagrangian (1) by dropping all modes except for
the tachyonic one. To consider such an approximation is also
not a new idea but can be found in [23], Sect. 4.

The Lagrangian (10) is a Higgs Lagrangian in two dimen-
sions with a Mexican hat potential. Below, I apply the known
Higgs mechanism to the tachyonic mode. This implies a shift

φ(x0, x3) → φ(x0, x3) + v, (11)
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where v is a (constant) condensate field. After that, the field
φ(x0, x3) can be quantized using standard methods and all
mass insertion diagrams can be summed up. For this I apply
the CJT formalism, [10], (which is equivalent to taking the
second Legendre transform, see [11]). It will be sufficient
to take it in Hartree approximation. Then the corresponding
gap equation will be solved and an effective potential with
a nontrivial minimum at some finite value of v shows up, of
course with no imaginary part. The v in the minimum of the
effective potential is, then, a condensate of tachyons. At once
this answers the question about the fate of the initial chromo-
magnetic vacuum; it remains as such, but now the tachyons
(which are bosons) form a condensate (in a nonrelativistic
theory it would be called a Bose-Einstein condensate).

At his point, another argument against the chromomag-
netic vacuum must be mentioned, which is related to the
temperature phase transition. At sufficiently high tempera-
tures one expects all condensates, resulting from a sponta-
neous symmetry breaking, to disappear. As shown in several
papers, beginning with [12], for the chromomagnetic vacuum
in the one-loop approximation this is not the case due to the
tachyonic mode. At the same time, the stable modes behave
well, i.e., with no imaginary part and symmetry restoration
at high temperature. Now, it is well known that the Higgs
mechanism works also at finite temperatures and it shows the
expected symmetry restoring phase transition. Below we will
see that this is also the case for (10). This way, the application
of the Higgs mechanism to the tachyonic modes removes the
problem with the symmetry restoration.

The paper is organized as follows. In the next section,
we derive the field theory for the tachyonic mode. In the
third section, we perform the necessary resummation and
demonstrate the numerical results. In Sect. 4 we discuss the
results.

Throughout the paper, natural units are used. All formulas
are written in the Euclidean version.

2 Field theory with the tachyonic mode

In this Sect. 1 consider the action of SU(2) dropping all modes
except for the tachyonic one. First attempts to do so were
undertaken in [2] and subsequent papers. This should be
understood as a first approximation in the assumption that
the tachyonic mode captures the essential basics and that
the remaining modes can be handled as perturbations. This
approximation is somehow similar to the lowest-Landau-
level approximation.

The initial action, taken now in the Euclidean version,
reads

S =
∫

d4x LQCD (12)

with the Lagrangian (1), dropping the quark contribution.
The free energy is related to the functional integral

Z =
∫

DAa
μ eS . (13)

We turn the gauge potential Aa
μ into the so-called charged

basis,

Wμ(x) = 1√
2

(
A1

μ + i A2
μ

)
, Aμ = A3

μ,

W ∗
μ(x) = 1√

2

(
A1

μ − i A2
μ

)
. (14)

The field Aμ is the color neutral component and Wμ is color
charged. It is a complex field whereas Aμ remains real. This
way the theory has a neutral and a charged vector fields (drop-
ping the word ’color’ from now on). The derivatives for the
charged field are

Dμ = ∂μ − i Bμ (15)

with the background potential

Bμ = B

2

(−gμ1x2 + gμ2x1
)
. (16)

This is the background field in (4) without the color index.
We took it in radial gauge for convenience. The magnetic
field strength is B (without index).

The action can be split into parts,

S = Sc + S2 + S3 + S4, (17)

where

Sc = − B2

2
(18)

is the classical action resulting from the background field,

S2 =
∫

dx

[
1

2
Aμ(gμν∂

2 −
(

1 − 1

ξ

)
∂μ∂ν)Aν

+ W ∗
μ

(
gμνD

2 −
(

1 − 1

ξ

)
DμDν + 2i Fμν

)
Wν

]

(19)

is the quadratic part of the Lagrangian with the field strength
Fμν = B(δ−μ1δν2 + δμ2δν1) of the background Bμ. In the
following we put the gauge fixing partameter ξ = 1. We
do not write down the triple part since it will not contribute
below. The quartic part reads

S4 = g2
∫

dx
(
W ∗

μWνW
∗
μWν − W ∗

μWμW
∗
ν Wν

)
. (20)
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In principle, one needs to add, beyond the gauge fixing term.
also the ghost term. Now, in the one-loop contribution, the
nonphysical gluons and the ghost contributions cancel. Fur-
ther, the ghosts do not have tachyonic contributions and there-
for we do not need to consider them in the following.

The tachyonic contribution is in the charged field and,
using polar coordinates in the (x1, x2)-plane, it reads

Wta
μ (x) = 1√

2

⎛

⎜⎜
⎝

1
i
0
0

⎞

⎟⎟
⎠

μ

∫
dk4dk3

(2π)2 eikαxα

×
∑

l≥0

eilϕ√
2π

ul(r)ψ̃l(kα), (α = 3, 4), (21)

where

r =
√
x2

1 + x2
2 , ul(x) =

(
B

l!
)1/2 (

Br2

2

)l/2

exp

(
− B

2
r2

)
,

∫ ∞

0
dr r ul(r)

2 = 1, (22)

and ul(r) are the wave functions belonging to the lowest
Landau level. This level is degenerated in the orbital quantum
number l.

This way, the tachyonic mode is represented by complex
scalar fields, ψ̃l(kα), in two dimensions. We introduce their
Fourier transform back into configuration space,

ψl(xα) =
∫

dkα

(2π)2 e−ikαxα

ψ̃l(kα). (23)

and note from (21),

Wta
μ (x) = 1√

2

⎛

⎜⎜
⎝

1
i
0
0

⎞

⎟⎟
⎠

μ

∑

l≥0

eilϕ√
2π

ul(r)ψl(xα). (24)

We insert (24) into the action (17) and get for the quadratic
part

S2 =
∫

dx4dx3

∑

l≥0

ψ∗
l (xα)

(
∂2
α + gB

)
ψl(xα). (25)

In the contribution from the tachyonic mode to the quartic
part of the action, (20), only the second term contributes and
we arrive at

S4 = g2 B

2π

∫
dx4dx3

∑

li≥0

N4(li ) ψ∗
l1(xα)ψ∗

l2(xα)ψl3

× (xα)ψl4(xα) (26)

with

N4(li ) = (l1 + l3)!
∏4

i=1

√
2li+1li !

δl1−l2,l3−l4 . (27)

This way, we dropped all modes except for the tachyonic one.
The initial action (17) is reduced to that of a series of com-
plex scalar fields in two dimensions. The self-interaction S4,
(27), describes a quite complicated interaction of the orbital
momenta entering the tachyonic mode. In the following, in
order to have managable expressions, we restrict ourselves
to the lowest momentum, l = 0. This can be justified as
follows. Assume, for a moment, a finite extend of the back-
ground field, say a circle of radius R in the (x1, x2)-plane. The
number of orbital modes is restricted by the flux, l � BπR2.
Dividing by the area, and taking R → ∞, we get l (per unit
area) restricted by the background field. If we assume B to be
less than one, we have only the lowest orbital mode excited.
We will return to this point in the conclusions. So far, in the
following we will use (25) and (27) with l = 0 and N4 = 1.

As mentioned above, the orbital momenta l describe the
degeneracy of the Landau levels in the given, radial gauge,
which has a cylindrical symmetry in the (x1, x2)-plane. The
question of the restriction to the lowest of the degenerate
states was also discussed in [23], where the Landau gauge was
taken for the background potential. In that case, the energy
is degenerated with respect to a momentum belonging to
the translational invariant direction in the plane perpendic-
ular to the magnetic field. In the corresponding formula for
the interaction, S4, two additional momentum integrations

appear together with a weight factor ∼ exp
(
− q2+p2

2gB

)
. As

argued in [23], for mall B a saddle point expansion leaves
only p = q = 0 in the leading order and S4 takes the form
of (26) with li = 0.

3 Applying the second Legendre transform to the
tachyonic action

The action for the tachyonic mode is given by eqs. (17),
(25) and (26) in the preceding section with the complex field
ψ(xα). This way we have a model which is equivalent to an
O(2) model.

In this section, we apply the known formalism of the sec-
ond Legendre transform to this model. As already mentioned,
this is equivalent to the CJT formalism. We follow the nota-
tions of [13] with N = 2. We consider the model at finite
temperature, using the Matsubara formulation. To conform
the notations used in [13], we switch to real fields,

ψ(xα) = 1√
2
(η(xα) + iφ(xα)) (28)
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where η(xα) has the meaning of a Higgs field and φ(xα) has
the meaning of a Goldstone field, and rewrite the action in
the form

S =
∫

dx1dx2

[
1

2
η(xα)(∂2

α + m2)η(xα)

+φ(xα)(∂2
α + m2)φ(xα) − λ

8

(
η(xα)2 + φ(xα)2

)2
]

(29)

with the notations

m2 = gB, λ = 2g2 gB

2π
. (30)

Here we dropped for the moment the classical energy Sc , (18).
In (30), we changed the sign of the mass term as compared
to (9) so that it enters now with the ’wrong’ sign, and the
coupling has now a dimension. This way, we have the well-
known situation with an instability due to the mass term,
which results in a ’Mexican hat’ potential and calls for spon-
taneous symmetry breaking. We shift the Higgs field,

η(xα) → η(xα) + v. (31)

After that, the action (29) turns into

S = S0 + S2 + S4,

S0 =
∫

dxα

(
m2

2
v2 − λ

8
v4

)
,

S2 =
∫

dxα

1

2

[
η(xα)(∂2

α − μ2
η)η(xα)

+φ(xα)(∂2
α − μ2

φ)φ(xα)
]
,

S4 = −λ

8

∫
dxα

1

2

[
η(xα)4 + 4η(xα)3v

+2(η(xα)2 + 2η(xα)v)φ(xα)2 + φ(xα)4
]
. (32)

From the shift (31), we have new mass parameters,

μ2
η = −m2 + 3

2
λv2, μ2

φ = −m2 + 1

2
λv2. (33)

After applying the second Legendre transform, the effective
action, W , takes the form

W = m2

2
v2 − λ

8
v4 + 1

2
tr ln βη + 1

2
tr ln βφ

− 1

2
tr�−1

η βη − 1

2
tr�−1

π βπ + W2[βη, βφ]. (34)

In fact, this is a density. A factor proportional to the time
and the length in the direction of the background field were

dropped. In (34), W2[βη, βφ] is the sum of all 2PI (two par-
ticle irreducible) graphs (with no external legs). The sec-
ond Legendre transform is with respect to the propagators.
These become new, arbitrary functions βη and βφ , and appear
as functional arguments of W2[βη, βφ]. To continue, we
turn into momentum representation. The propagators become
functions of the momenta, βη(kβ) and βφ(kβ) and

�−1
η = k2

α + μ2
η, �−1

φ = k2
α + μ2

φ, (35)

are the inverse free propagators, resulting from S2 in (32).
These are subject to the corresponding Schwinger-Dyson
equations,

β−1
η = �−1

η − �η(k), β−1
φ = �−1

φ − �φ(k), (36)

where

�η(k) = 2
δW2[βη, βφ]

δβη

, �φ(k) = 2
δW2[βη, βφ]

δβφ

, (37)

are functional derivatives from the 2PI graphs. The traces in
(33) are defined in the usual way,

tr = T
∑

�

∫
dk3

2π
, with k4 = 2πT �, (38)

where the sum is over the Matsubara frequencies.
Equation (33) is an equivalent, re-summed representation

of the theory. Expanding in powers of the coupling would
return us to the initial, perturbative formulation of the theory.
Now, in general representation (33) is as useful as the initial
formulation. One has to make an approximation. The first
graphs in the expansion of W2[βη, βφ] have two loops with
one vertex. Restricting W2[βη, βφ] to these graphs defines
the Hartree approximation which generates all super daisy
graphs. We will use it in the following. The graphical and
analytical expressions read

WHartree
2 =

1
8

+
1
4

+
1
4

,

= −3λ
8

(
Σ(0)

η

)2
− λ

4
Σ(0)

η Σ(0)
φ − 3λ

8

(
Σ(0)

φ

)2
,

(39)

where the solid line represents βη and the dashed line is βφ .
The analytical expressions factorize and we are left with

Σ(0)
η ≡ trβη = , Σ(0)

φ ≡ trβφ = ,

(40)
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which resulted in the second line in (39).
In this approximation, we can easily carry out the deriva-

tives in (37) and arrive at

�η(k) = −3λ

2
�(0)

η − λ

2
�

(0)
φ ,

�φ(k) = −λ

2
�(0)

η − 3λ

2
�

(0)
φ . (41)

In the Hartree approximation, these expressions do not
depend on the momenta. Thus, we can make an ansatz

βη(k) = 1

k2
β + M2

η

, βφ(k) = 1

k2
β + M2

φ

(42)

and, using also (35), the Schwinger-Dyson equations (36)
turn into gap equations,

M2
η = −m2 + 3λ

2
v2 + 3λ

2
�(0)

η + λ

2
�

(0)
φ ,

M2
φ = −m2 + λ

2
v2 + λ

2
�(0)

η + 3λ

2
�

(0)
φ . (43)

Now it is possible to simplify (33) by rewriting

tr�−1
η βη = tr

k2
β + μ2

η

k2
β + M2

η

= (μ2
η − M2

η )�(0)
η ,

tr�−1
φ βφ = tr

k2
β + μ2

φ

k2
β + M2

φ

= (μ2
φ − M2

φ)�
(0)
φ (44)

(up to inessential constants), where (35), (42) and (40) where
used.

Now we insert (39) and (44) into (34) and get the effective
action in Hartree approximation. It is convenient to turn to
the effective potential

W = −Vef f (45)

and we arrive at

Vef f = −m2

2
v2 + λ

8
v4 + 1

2
V1(Mη) + 1

2
V1(Mφ)

− 3λ

8

(
�0(Mη)

)2 − λ

4
�0(Mη)�0(Mφ)

− 3λ

8

(
�0(Mφ)

)2
, (46)

where we introduced the notations

V1(M) = tr ln(k2
α + M2), �0(M) = tr

1

k2
α + M2 , (47)

and note

�(0)
η = �0(Mη), �

(0)
φ = �0(Mφ). (48)

Together with the gap equations (43), these formulas rep-
resent the effective potential in Hartree approximation, and
allow for quite easy numerical investigation.

To proceed, we need expressions for the basic function
(47). Using known approaches, we arrive at

V1(M) = −M2

4π

(
ln

M2

μ2 − 1

)
− MT

π
S4(M/T ),

�0(M) = −1

4π
ln

M2

μ2 + 1

π
S2(M/T ), (49)

where μ is the scale parameter which comes in from the regu-
larization. Following [1], we use the normalization condition
∂V1(M)

∂M2 |
ln M2

μ2 =0
= −1. In the truncated model, used in this

paper, a change of the parameter μ would only change the
scale. It is convenient to put μ = 1 in the following.

In (49),

S4(x) =
∞∑

n=1

1

n
K1(nx) = 1

x

∫ ∞

x
dy

(y2 − x2)1/2

ey − 1

�
x→0

π2

6x
− π

2
− x

8

(
ln

x

4π
− γ + 1

2

)
+ . . . ,

S2(x) =
∞∑

n=1

K0(nx) =
∫ ∞

x
dy

(y2 − x2)−1/2

ey − 1

�
x→0

π

2x
+ x

4

(
ln

x

4π
+ γ + 1

2

)
+ . . . . (50)

Here, the first terms are the well-known representation of the
temperature sums in terms of modified Bessel function, the
second terms are the corresponding integral representations.
For completeness, the asymptotic expansions for small x are
also indicated. The first terms in (49) are the zero temper-
ature contributions. These carry the ultraviolet divergences.
The second terms are the temperature-dependent addenda.
These formulas may be compared with the corresponding
ones (these are in similar notations) in the Appendix in [14]
for the case of four dimensions.

The gap equations (43), with the functions (50) inserted,
have real solutions for any temperature and condensate v.
This follows from the behavior of �0(M) for M → 0, which
grows logarithmically. As a consequence, the effective poten-
tial (45) takes always (for all values of the condensate v) real
values. It is to be mentioned that this is a result of the resum-
mation already at zero temperature.

With the above formulas, in our O(2)-model after the sym-
metry breaking (30), the phase transition may be investigated
numerically at finite temperature. At high temperature, it may
be investigated also analytically using the expansions shown
in (50). The known result is a first-order phase transition;
at some Tc, the condensate disappears and the symmetry is
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Fig. 1 Vef f as function of v for b = 0.1 and g = 1 for several values
of T

restored. In Fig. 1 we show the effective potential (46), nor-
malized to its value at v = 0, for several temperatures. It
shows the expected behavior; a minimum at low T , which
disappears after some critical temperature. For the parame-
ters we took (30) with g = 1 and gB = 0.1.

As mentioned above, we need not only a minimum with
respect to the condensate v, but also with respect to the back-
ground field B. Also, we have to add the classical energy Sc,
(18), to (46),

Ṽe f f (v, B) = B2

2
+ Vef f , (51)

and to look for a minimum of this function of two variables.
A numerical evaluation, using the above formulas, shows that
there is, at zero and low temperatures, indeed a unique min-
imum. It can be seen in the contour plots in Fig. 2. When
raising the temperature, the minimum becomes shallower,
staying nearly in place. At some temperature, corresponding
to T = 0.16 in Fig. 1, a second minimum shows up at ori-
gin. This situation is shown in Fig. 3, left panel. Raising the
temperature further, corresponding to T = 0.18 in Fig. 1, the
minimum at the origin becomes the deeper one and the con-
densate disappears. In a separate plot in Fig. 3, we display
the depth of the minimum as function of the temperature. It
is seen that T = 0.12 is the critical temperature.

4 Discussions and conclusions

In this paper, I proposed an idea for a new solution for the
vacuum of QCD. It rests on the assumption that the unsta-
ble, tachyonic mode in a chromomagnetic background field
forms a condensate. This means that the amplitude ψ̃ in (21)
acquires an addendum in form of a shift, Eq. (31), and that the
corresponding effective potential is lower than the perturba-
tive one. For the tachyonic mode this is just the same situation
as with the Higgs model and its ’Mexican hat’ potential. In
our case, the contribution −gB to the spectrum (8) plays
the role of the negative mass square. It is only the tachyonic

mode which acquires a condensate. This way, the original
SU(2)-symmetry will be spontaneously broken. We mention
that the applicability of Elitzur’s theorem to the considered
situation is an open question.

To realize the above proposition, we assume that the basic
features can be investigated in an approximation where all
gluon modes except for the tachyonic one are neglected, i.e.,
in a kind of lowest-Landau-level approximation. The result-
ing theory is an O(2)-model in two dimensions with a mass
and a coupling which depend on the background field, eq.
(30).

In Sect. 3, we applied the known CJT (or 2PI) formalism
(see [10] or [11]) to this model. First, we verified that this
model, which is usually considered in four dimensions, also
in our case has the expected behavior, shown in Fig. 1. It
must be mentioned that we used the Hartree approximation.
It is known not to be quite accurate near the phase transi-
tion (for instance it shows a first-order transition), but qual-
itatively correct beyond. These features were confirmed in
[15] by different methods. Also we mention the quite recent
papers [16–18] (and citations therein), where improvements
are discussed, which result in a second order character of the
transition. The applied formalism sums up an infinite number
of graphs. Technically, it implies the solution of a gap equa-
tion and becomes nonperturbative. As a result, all imaginary
parts disappeared, i.e., the resulting theory is stable.

The observed phase transition seems to be in contradiction
with the Mermin-Wagner theorem, stating that no continuous
symmetry can be spontaneously broken in two dimensional
systems. However, over the past decades an understanding
appeared that this ’theorem’ must be applied carefully. First,
it must be mentioned that there is a number of experimen-
tal observation of phase transitions in 2d systems, see for
example [19]. Second, there is a theoretical understanding
of the situation. Here the point is that the average 〈ψ〉 of the
field ψ(xα) should vanish (in accordance with the theorem),
but the average 〈ψ∗ψ〉 of its module may well be non-zero.
This idea can be found in several papers, [20] and [21], to
mention two of them, and more explicitly in [22]. The formal-
ism of the second Legendre transform, used in Sect. 3, can
be expected to confirm these observation if going beyond
the Hartree approximation. It should be mentioned that, this
way, the average 〈ψ〉 ∼ v should vanish while 〈ψ∗ψ〉 ∼ v2

should persist. We conclude with the remark, that the masses
Mη and Mφ in the gap equations as well as the effective
potential depend on v2 only. This would also explain why
the average of the gauge field Wta

μ (x), (21), which is gauge
dependent, may vanish, while its module square, which enters
the field strength, may result in a gauge independent conden-
sate. However, at the present stage this is a speculation. It
should be mentioned that in the just described scenario the
O(2)-symmetry would not be broken and we would not come
in conflict with the mentioned theorem.
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Fig. 2 The vacuum energy Ṽe f f (v, B), (51), for T = 0 (left panel) and T = 0.08, right panel. The parameters on the axes are the condensate v,
introduced in (31) and b = gB, which is the background field

Fig. 3 The vacuum energy Ṽe f f (v, B), (51), for T = 0.12 (left panel) with two minima. The parameters on the axes are the condensate v,
introduced in (31) and b = gB, which is the background field. The right panel shows the depth, Min(Ṽe f f ), of the minimum as function of the
temperature

We considered the complete effective potential, Ṽe f f , (51),
as a function of two variables, the condensate v and the back-
ground field B. We remind that B enters through the mass
parameter and the coupling, (30), only. This is equivalent
to looking for the lowest minimum in Fig. 1, changing B.
Indeed, we found such a minimum. and it is below the per-
turbative one in the plane of the two parameters v and B,
see Fig. 2. As a result, the system will enter this state. The
symmetry will be broken by two parameters, v, and B, and
these will be fixed by this minimum. It must be mentioned
that with v an additional parameter came in which is initially
independent of the background field B and becomes related
with B after minimization of the effective potential.

Raising the temperature, the mentioned minimum becomes
shallower, and a second minimum at the origin appears
(shown in Fig. 3), which becomes the deeper one when fur-
ther raising the temperature. This way, the symmetry will be

restored. The depth of the minimum is shown in the right
panel in Fig. 3 as a function of the temperature.

The approximations made, i.e., the restriction to the tachy-
onic mode and the Hartree approximation, are the most far-
reaching, which keep the key features. Improvements should
include, besides a better treatment of the resummation pro-
cedure, the inclusion of the other modes of the gluon field.
A first candidate is the color neutral mode, Aμ in (14). This
was discussed already in [23], however without performing
any resummation. A further step will be the inclusion of the
stable color charged modes, Wμ in (14). It is known that these
show a minimum of the effective potential close to that shown
in (6), and also a symmetry restoration at high temperature.
However, their influence can be expected to be small, espe-
cially for small coupling where it is exponentially suppressed
in a way similar to (6).
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In section 2 we discussed the orbital momentum l describ-
ing the degeneracy of the lowest Landau level and restricted
yourself to the lowest one, l = 0. As motivation we discussed
that the number of orbital momenta per unit area is restricted
by the flux. From the results of Sect. 3 we see that the min-
imum of the magnetic background field is around B ∼ 0.1,
i.e., less than one flux quantum per unit area. This way, our
restriction to l = 0 is justified.

In summary, we have seen that an infinite summation of
graphs and a condensate of the tachyons, stabilize the theory
and that the symmetry is restored when raising the temper-
ature. These are the essential features, making the chromo-
magnetic vacuum a good candidate for the ground state of
QCD. Over the past decades, a much-discussed question was
what happens with the tachyonic mode. The physical answer
is that tachyons are created (from the instability) until these
come into equilibrium with their repulsive self-interaction
and that these tachyons form a stable condensate.

An interesting point will be the inclusion of an A0-
background, which was the initial motivation for this work,
as mentioned in the Introduction. Now, with a tachyon con-
densate, one should look at whether such a background could
lower the effective potential further.

Of course, the present investigation is only a first step
towards the true vacuum of QCD. Certainly, one has to go
beyond the Hartree approximation to improve the under-
standing of the phase transition. The discussion has to be
generalized to SU(3) and to include the quarks. There are
more open questions with the considered model. For instance,
the condensate for the tachyonic mode breaks the gauge
invariance and the direction of the background field (along
the z-axis) breaks the rotational invariance. Also, a homo-
geneous condensate and background field will, probably, at
some place decay into a domain structure. In other words,
starting from the given model, one has to look for a lower-
lying configuration. In this connection, it is interesting to
remark that also in a string-like background, as considered
in [24], a negative effective potential was found as well as a
tachyonic mode in [25].
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