Skip to main content
Log in

Precise Q value determinations for forbidden and low energy \(\beta \)-decays using Penning trap mass spectrometry

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Nuclear \(\beta \)-decay provides a laboratory for investigating weak decays occurring inside the nuclear medium. This provides information on the resulting subtle nuclear and atomic effects, and on the underlying interaction and the properties of the particles that are involved, particularly of the neutrino. The Q value of the decay corresponds to the energy equivalent of the mass difference between parent and daughter atoms, and can be precisely and accurately measured using Penning trap mass spectrometry. In this paper we discuss Penning trap Q value measurements for forbidden \(\beta \)-decays of long-lived primordial nuclides, and for a subset of \(\beta \)-unstable nuclides that could potentially undergo a very low energy decay to an excited state in the daughter nucleus. We discuss applications of these measurements to tests of systematics in detectors that perform precise \(\beta \)-spectrum measurements, as inputs for theoretical shape factor, electron branching ratio and half-life calculations, and to identify nuclides that could serve as new candidates in direct neutrino mass determination experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data are listed in the references and are publicly available.].

Notes

  1. It is understood that the parent and daughter nuclides, X and Y, in Eq.  (1) are not the same as those in Eqs.  (2) and (3) (although it is possible for the two to have a common parent or a common daughter nuclide).

  2. These Q value definitions ignore the binding energies of the missing/additional electron in \(\beta ^{-}\)/\(\beta ^{+}\) decay, which is \(\sim \)eV and is typically negligible, and they ignore the binding energy of the captured, typically K or L shell electron, in EC decay, which is \(\sim \)keV and must be accounted for in some cases.

  3. Ideally, this reference mass would be \(^{12}\,\hbox {C}^{+}\), since the atomic mass unit can be defined precisely in terms of the mass of \(^{12}\)C, but in practice it is better to measure the cyclotron frequency ratio of ions of similar mass to reduce the effect of potential mass-dependent systematic frequency shifts on the ratio.

References

  1. L.M. Brown, The idea of the neutrino. Phys. Today 31(9), 23 (1978). https://doi.org/10.1063/1.2995181

    Article  Google Scholar 

  2. E. Fermi, Tentativo di una Teoria Dei Raggi \(\beta \). Il Nuovo Cimento (1924-1942) 11(1), 1–19 (1934)

    MATH  Google Scholar 

  3. E. Fermi, Versuch einer Theorie der \(\beta \)-Strahlen. I. Zeitschrift für Physik 88(3), 161–177 (1934)

    ADS  MATH  Google Scholar 

  4. F.L. Wilson, Fermi’s theory of beta decay. Am. J. Phys. 36(12), 1150–1160 (1968)

    ADS  Google Scholar 

  5. T.D. Lee, C.N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956). https://doi.org/10.1103/PhysRev.104.254

    Article  ADS  Google Scholar 

  6. C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957). https://doi.org/10.1103/PhysRev.105.1413

    Article  ADS  Google Scholar 

  7. S.L. Glashow, The renormalizability of vector meson interactions. Nucl. Phys. 10, 107–117 (1959)

    MATH  Google Scholar 

  8. A. Salam, J.C. Ward, Weak and electromagnetic interactions. Il Nuovo Cimento (1955-1965) 11(4), 568–577 (1959)

    MATH  Google Scholar 

  9. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967). https://doi.org/10.1103/PhysRevLett.19.1264

    Article  ADS  Google Scholar 

  10. I.S. Towner, J.C. Hardy, Improved calculation of the isospin-symmetry-breaking corrections to superallowed \({Fermi}\)\(\beta \) decay. Phys. Rev. C 77, 025501 (2008). https://doi.org/10.1103/PhysRevC.77.025501

    Article  ADS  Google Scholar 

  11. N. Severijns, M. Tandecki, T. Phalet, I.S. Towner, \({\cal{F} }t\) values of the \({T}=1/2\) mirror \(\beta \) transitions. Phys. Rev. C 78, 055501 (2008). https://doi.org/10.1103/PhysRevC.78.055501

    Article  ADS  Google Scholar 

  12. Burdette, D., Brodeur, M., O’Malley, P., Valverde, A.: Development of the St. benedict paul trap at the nuclear science laboratory. Hyperf. Interact. 240(1), 70 (2019)

  13. M. González-Alonso, O. Naviliat-Cuncic, N. Severijns, New physics searches in nuclear and neutron \(\beta \) decay. Prog. Part. Nucl. Phys. 104, 165–223 (2019)

    ADS  Google Scholar 

  14. A. Falkowski, M. González-Alonso, O. Naviliat-Cuncic, Comprehensive analysis of beta decays within and beyond the \({Standard Model}\). J. High Energy Phys. 2021(4), 126 (2021)

    Google Scholar 

  15. M. Haaranen, P.C. Srivastava, J. Suhonen, Forbidden nonunique \(\beta \) decays and effective values of weak coupling constants. Phys. Rev. C 93, 034308 (2016). https://doi.org/10.1103/PhysRevC.93.034308

    Article  ADS  Google Scholar 

  16. M. Haaranen, J. Kotila, J. Suhonen, Spectrum-shape method and the next-to-leading-order terms of the \(\beta \)-decay shape factor. Phys. Rev. C 95, 024327 (2017). https://doi.org/10.1103/PhysRevC.95.024327

    Article  ADS  Google Scholar 

  17. J. Kostensalo, M. Haaranen, J. Suhonen, Electron spectra in forbidden \(\beta \) decays and the quenching of the weak axial-vector coupling constant \({g}_{A}\). Phys. Rev. C 95, 044313 (2017). https://doi.org/10.1103/PhysRevC.95.044313

    Article  ADS  Google Scholar 

  18. J. Kostensalo, J. Suhonen, \({g}_{A}\)-driven shapes of electron spectra of forbidden \(\beta \) decays in the nuclear shell model. Phys. Rev. C 96, 024317 (2017). https://doi.org/10.1103/PhysRevC.96.024317

    Article  ADS  Google Scholar 

  19. K.C.M. Aker et al., Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. Phys. Rev. Lett. 123, 221802 (2019). https://doi.org/10.1103/PhysRevLett.123.221802

    Article  ADS  Google Scholar 

  20. V.N. Aseev, A.I. Belesev, A.I. Berlev, E.V. Geraskin, A.A. Golubev, N.A. Likhovid, V.M. Lobashev, A.A. Nozik, V.S. Pantuev, V.I. Parfenov, A.K. Skasyrskaya, F.V. Tkachov, S.V. Zadorozhny, Upper limit on the electron antineutrino mass from the \({Troitsk}\) experiment. Phys. Rev. D 84, 112003 (2011). https://doi.org/10.1103/PhysRevD.84.112003

    Article  ADS  Google Scholar 

  21. C. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, A. Kovalik, B. Ostrick, E.W. Otten, J. Schall, T. Thümmler et al., Final results from phase II of the Mainz neutrino mass search in tritium \(\beta \) decay. Eur. Phys. J. C 40, 447–468 (2005)

    ADS  Google Scholar 

  22. C. Arnaboldi, C. Brofferio, O. Cremonesi, E. Fiorini, C. Lo Bianco, L. Martensson, A. Nucciotti, M. Pavan, G. Pessina, S. Pirro, E. Previtali, M. Sisti, A. Giuliani, B. Margesin, M. Zen, Bolometric bounds on the antineutrino mass. Phys. Rev. Lett. 91, 161802 (2003). https://doi.org/10.1103/PhysRevLett.91.161802

    Article  ADS  Google Scholar 

  23. P.T. Springer, C.L. Bennett, P.A. Baisden, Measurement of the neutrino mass using the inner bremsstrahlung emitted in the electron-capture decay of \(^{163}{Ho}\). Phys. Rev. A 35, 679–689 (1987). https://doi.org/10.1103/PhysRevA.35.679

    Article  ADS  Google Scholar 

  24. E.C.L. Gastaldo et al., The electron capture in \(^{163}\)Ho experiment - ECHo. Eur. Phys. J. Spec. Top. 226, 1623 (2017). https://doi.org/10.1140/epjst/e2017-70071-y

    Article  Google Scholar 

  25. M. Faverzani et al., The HOLMES experiment. J. Low Temp. Phys. 184, 922 (2016). https://doi.org/10.1007/s10909-016-1540-x

    Article  ADS  Google Scholar 

  26. S. Fretwell, K.G. Leach, C. Bray, G.B. Kim, J. Dilling, A. Lennarz, X. Mougeot, F. Ponce, C. Ruiz, J. Stackhouse, S. Friedrich, Direct measurement of the \(^{7}{Be}\)\(L/K\) capture ratio in Ta-based superconducting tunnel junctions. Phys. Rev. Lett. 125, 032701 (2020)

    ADS  Google Scholar 

  27. S. Friedrich, G.B. Kim, C. Bray, R. Cantor, J. Dilling, S. Fretwell, J.A. Hall, A. Lennarz, V. Lordi, P. Machule, D. McKeen, X. Mougeot, F. Ponce, C. Ruiz, A. Samanta, W.K. Warburton, K.G. Leach, Limits on the existence of sub-MeV sterile neutrinos from the decay of \(^{7}\)Be in superconducting quantum sensors. Phys. Rev. Lett. 126, 021803 (2021). https://doi.org/10.1103/PhysRevLett.126.021803

    Article  ADS  Google Scholar 

  28. C.J. Martoff, F. Granato, V. Palmaccio, X. Yu, P.F. Smith, E.R. Hudson, P. Hamilton, C. Schneider, E. Chang, A. Renshaw, F. Malatino, P.D. Meyers, B. Lamichhane, HUNTER: precision massive-neutrino search based on a laser cooled atomic source. Quant. Sci. Technol. 6(2), 024008 (2021)

    ADS  Google Scholar 

  29. F.T. Avignone, S.R. Elliott, J. Engel, Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 80, 481–516 (2008). https://doi.org/10.1103/RevModPhys.80.481

    Article  ADS  Google Scholar 

  30. R. Henning, Current status of neutrinoless double-beta decay searches. Rev. Phys. 1, 29–35 (2016)

    Google Scholar 

  31. A.C. Hayes, J.L. Friar, G.T. Garvey, G. Jungman, G. Jonkmans, Systematic uncertainties in the analysis of the reactor neutrino anomaly. Phys. Rev. Lett. 112, 202501 (2014). https://doi.org/10.1103/PhysRevLett.112.202501

    Article  ADS  Google Scholar 

  32. A.C. Hayes, P. Vogel, Reactor neutrino spectra. Annu. Rev. Nucl. Part. Sci. 66(1), 219–244 (2016). https://doi.org/10.1146/annurev-nucl-102115-044826

    Article  ADS  Google Scholar 

  33. L. Hayen, J. Kostensalo, N. Severijns, J. Suhonen, First-forbidden transitions in the reactor anomaly. Phys. Rev. C 100, 054323 (2019). https://doi.org/10.1103/PhysRevC.100.054323

    Article  ADS  Google Scholar 

  34. S.J. Haselschwardt, J. Kostensalo, X. Mougeot, J. Suhonen, Improved calculations of \(\beta \) decay backgrounds to new physics in liquid xenon detectors. Phys. Rev. C 102, 065501 (2020). https://doi.org/10.1103/PhysRevC.102.065501

    Article  ADS  Google Scholar 

  35. J. Suhonen, From nucleons to nucleus (Springer, Berlin, 2007)

    MATH  Google Scholar 

  36. L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986). https://doi.org/10.1103/RevModPhys.58.233

    Article  ADS  Google Scholar 

  37. K. Blaum, High-accuracy mass spectrometry with stored ions. Phys. Rep. 425(1), 1–78 (2006)

    ADS  Google Scholar 

  38. K. Blaum, J. Dilling, W. Nörtershäuser, Precision atomic physics techniques for nuclear physics with radioactive beams. Physica Scripta 2013(T152), 014017 (2013)

    Google Scholar 

  39. L.S. Brown, G. Gabrielse, Precision spectroscopy of a charged particle in an imperfect Penning trap. Phys. Rev. A 25, 2423–2425 (1982). https://doi.org/10.1103/PhysRevA.25.2423

    Article  ADS  Google Scholar 

  40. G. Gabrielse, Why is sideband mass spectrometry possible with ions in a Penning trap? Phys. Rev. Lett. 102, 172501 (2009). https://doi.org/10.1103/PhysRevLett.102.172501

    Article  ADS  Google Scholar 

  41. F.L. Moore, L.S. Brown, D.L. Farnham, S. Jeon, P.B. Schwinberg, R.S. Van Dyck, Cyclotron resonance with \({10}^{{-}11}\) resolution: anharmonic detection and beating a coherent drive with the noise. Phys. Rev. A 46, 2653–2667 (1992). https://doi.org/10.1103/PhysRevA.46.2653

    Article  ADS  Google Scholar 

  42. R.S. van Dyck Jr, D.L. Farnham, P.B. Schwinberg, Precision mass measurements in the UW-PTMS and the electron’s “atomic mass’’. Physica Scripta 1995(T59), 134 (1995)

    Google Scholar 

  43. G. Gabrielse, A. Khabbaz, D.S. Hall, C. Heimann, H. Kalinowsky, W. Jhe, Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198–3201 (1999). https://doi.org/10.1103/PhysRevLett.82.3198

    Article  ADS  Google Scholar 

  44. E.A. Cornell, R.M. Weisskoff, K.R. Boyce, R.W. Flanagan, G.P. Lafyatis, D.E. Pritchard, Single-ion cyclotron resonance measurement of \(M\)(\(\text{ CO}^{+}\))/\(M\)(\(\text{ N}_{2}^{+}\)). Phys. Rev. Lett. 63, 1674–1677 (1989). https://doi.org/10.1103/PhysRevLett.63.1674

    Article  ADS  Google Scholar 

  45. E.A. Cornell, R.M. Weisskoff, K.R. Boyce, D.E. Pritchard, Mode coupling in a Penning trap: \(\pi \) pulses and a classical avoided crossing. Phys. Rev. A 41, 312–315 (1990). https://doi.org/10.1103/PhysRevA.41.312

    Article  ADS  Google Scholar 

  46. Shi, W., Redshaw, M., Myers, E.G.: Atomic masses of \(^{32,33}{S}\), \(^{84,86}{Kr}\), and \(^{129,132}{Xe}\) with uncertainties \(\leqslant 0.1{ppb}\). Phys. Rev. A 72, 022510 (2005). https://doi.org/10.1103/PhysRevA.72.022510

  47. J. Repp, C. Böhm, J.R. Crespo López-Urrutia, A. Dörr, S. Eliseev, S. George, M. Goncharov, Y.N. Novikov, C. Roux, S. Sturm, S. Ulmer, K. Blaum, PENTATRAP: a novel cryogenic multi-Penning-trap experiment for high-precision mass measurements on highly charged ions. Appl. Phys. B 107(4), 983–996 (2012)

    ADS  Google Scholar 

  48. F. Heiße, S. Rau, F. Köhler-Langes, W. Quint, G. Werth, S. Sturm, K. Blaum, High-precision mass spectrometer for light ions. Phys. Rev. A 100, 022518 (2019). https://doi.org/10.1103/PhysRevA.100.022518

    Article  ADS  Google Scholar 

  49. S. Ulmer, C. Smorra, A. Mooser, K. Franke, H. Nagahama, G. Schneider, T. Higuchi, S. Van Gorp, K. Blaum, Y. Matsuda, W. Quint, J. Walz, Y. Yamazaki, High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524(7564), 196–199 (2015)

    ADS  Google Scholar 

  50. G. Gräff, H. Kalinowsky, J. Traut, A direct determination of the proton electron mass ratio. Zeitschrift für Physik A Atoms and Nuclei 297(1), 35–39 (1980)

    ADS  Google Scholar 

  51. M. König, G. Bollen, H.-J. Kluge, T. Otto, J. Szerypo, Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectrom. Ion Process. 142(1), 95–116 (1995)

    ADS  Google Scholar 

  52. G. Bollen, H.-J. Kluge, T. Otto, G. Savard, H. Stolzenberg, Ramsey technique applied in a Penning trap mass spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 70(1), 490–493 (1992)

    ADS  Google Scholar 

  53. S. George, K. Blaum, F. Herfurth, A. Herlert, M. Kretzschmar, S. Nagy, S. Schwarz, L. Schweikhard, C. Yazidjian, The Ramsey method in high-precision mass spectrometry with penning traps: experimental results. Int. J. Mass Spectrom. 264(2), 110–121 (2007)

    Google Scholar 

  54. M. Kretzschmar, The Ramsey method in high-precision mass spectrometry with Penning traps: theoretical foundations. Int. J. Mass Spectrom. 264(2), 122–145 (2007)

    Google Scholar 

  55. R. Ringle, G. Bollen, P. Schury, S. Schwarz, T. Sun, Octupolar excitation of ion motion in a Penning trap—a study performed at LEBIT. Int. J. Mass Spectrom. 262(1), 33–44 (2007)

    Google Scholar 

  56. S. Eliseev, C. Roux, K. Blaum, M. Block, C. Droese, F. Herfurth, M. Kretzschmar, M.I. Krivoruchenko, E. Minaya Ramirez, Y.N. Novikov, L. Schweikhard, V.M. Shabaev, F. Šimkovic, I.I. Tupitsyn, K. Zuber, N.A. Zubova, Octupolar-excitation penning-trap mass spectrometry for \(Q\)-value measurement of double-electron capture in \(^{164}Er\). Phys. Rev. Lett. 107, 152501 (2011). https://doi.org/10.1103/PhysRevLett.107.152501

    Article  ADS  Google Scholar 

  57. M. Kretzschmar, Octupolar excitation of ion motion in a Penning trap: a theoretical study. Int. J. Mass Spectrom. 357, 1–21 (2014)

    Google Scholar 

  58. S. Eliseev, K. Blaum, M. Block, C. Droese, M. Goncharov, E. Minaya Ramirez, D.A. Nesterenko, Y.N. Novikov, L. Schweikhard, Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides. Phys. Rev. Lett. 110, 082501 (2013). https://doi.org/10.1103/PhysRevLett.110.082501

    Article  ADS  Google Scholar 

  59. S. Eliseev, K. Blaum, M. Block, A. Dörr, C. Droese, T. Eronen, M. Goncharov, M. Höcker, J. Ketter, E.M. Ramirez, D.A. Nesterenko, Y.N. Novikov, L. Schweikhard, A phase-imaging technique for cyclotron-frequency measurements. Appl. Phys. B 114(1), 107–128 (2014)

    ADS  Google Scholar 

  60. M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, D.E. Pritchard, Penning trap measurements of the masses of \(^{133}\)Cs, \(^{87,85}\)Rb, and \(^{23}\)Na with uncertainties \(\le 0.2\) ppb. Phys. Rev. Lett. 83, 4510–4513 (1999). https://doi.org/10.1103/PhysRevLett.83.4510

    Article  ADS  Google Scholar 

  61. R. Ringle, G. Bollen, A. Prinke, J. Savory, P. Schury, S. Schwarz, T. Sun, The LEBIT 9.4T Penning trap mass spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detect. Assoc. Equip. 604(3), 536–547 (2009)

    ADS  Google Scholar 

  62. V.S. Kolhinen, S. Kopecky, T. Eronen, U. Hager, J. Hakala, J. Huikari, A. Jokinen, A. Nieminen, S. Rinta-Antila, J. Szerypo, J. Äystö, JYFLTRAP: a cylindrical Penning trap for isobaric beam purification at IGISOL. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detect. Assoc. Equip. 528(3), 776–787 (2004)

    ADS  Google Scholar 

  63. G. Marx, D. Ackermann, J. Dilling, F.P. Hessberger, S. Hoffmann, H.-J. Kluge, R. Mann, G. Münzenberg, Z. Qamhieh, W. Quint, D. Rodriguez, M. Schädel, J. Schönfelder, G. Sikler, C. Toader, C. Weber, O. Engels, D. Habs, P. Thirolf, H. Backe, A. Dretzke, W. Lauth, W. Ludolphs, M. Sewtz, Status of the SHIPTRAP project: a capture and storage facility for heavy radionuclides from SHIP, 463–468 (2001)

  64. K.S. Sharma, R.C. Barber, F. Buchinger, J.E. Crawford, X. Feng, H. Fukutani, S. Gulick, G. Hackman, J.C. Hardy, D. Hofman, J.K.P. Lee, P. Martinez, R.B. Moore, G. Savard, D. Seweryniak, J. Uusitalo, Status of the Canadian Penning Trap mass spectrometer at the Argonne National Laboratories. AIP Conf. Proc. 455(1), 130–133 (1998)

  65. G. Savard, R.C. Barber, C. Boudreau, F. Buchinger, J. Caggiano, J. Clark, J.E. Crawford, H. Fukutani, S. Gulick, J.C. Hardy, A. Heinz, J.K.P. Lee, R.B. Moore, K.S. Sharma, J. Schwartz, D. Seweryniak, G.D. Sprouse, J. Vaz, The Canadian Penning Trap Spectrometer at Argonne, 223–230 (2001)

  66. G. Bollen, S. Becker, H.-J. Kluge, M. König, R.B. Moore, T. Otto, H. Raimbault-Hartmann, G. Savard, L. Schweikhard, H. Stolzenberg, ISOLTRAP: a tandem Penning trap system for accurate on-line mass determination of short-lived isotopes. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detect. Assoc. Equip. 368(3), 675–697 (1996)

    ADS  Google Scholar 

  67. J. Dilling, P. Bricault, M. Smith, H.-J. Kluge, The proposed TITAN facility at ISAC for very precise mass measurements on highly charged short-lived isotopes. Nucl. Instrum Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 204, 492–496 (2003)

    ADS  Google Scholar 

  68. I. Bergström, C. Carlberg, T. Fritioff, G. Douysset, J. Schönfelder, R. Schuch, SMILETRAP–A Penning trap facility for precision mass measurements using highly charged ions. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detect. Assoc. Equip. 487(3), 618–651 (2002)

    ADS  Google Scholar 

  69. P. Belli, R. Bernabei, F.A. Danevich, A. Incicchitti, V.I. Tretyak, Experimental searches for rare alpha and beta decays. Eur. Phys. J. A 55(8), 140 (2019)

    ADS  Google Scholar 

  70. A. Barabash, Precise half-life values for two-neutrino double-\(\beta \) decay: 2020 review. Universe 6, 159 (2020). https://doi.org/10.3390/universe6100159

    Article  ADS  Google Scholar 

  71. K. Blaum, S. Eliseev, F.A. Danevich, V.I. Tretyak, S. Kovalenko, M.I. Krivoruchenko, Y.N. Novikov, J. Suhonen, Neutrinoless double-electron capture. Rev. Mod. Phys. 92, 045007 (2020). https://doi.org/10.1103/RevModPhys.92.045007

    Article  ADS  Google Scholar 

  72. V.I. Tretyak, Y.G. Zdesenko, Tables of double beta decay data–an update. Atom. Data Nucl. Data Tables 80(1), 83–116 (2002). https://doi.org/10.1006/adnd.2001.0873

    Article  ADS  Google Scholar 

  73. M. Wang, W.J. Huang, F.G. Kondev, G. Audi, S. Naimi, The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 45(3), 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf

    Article  ADS  Google Scholar 

  74. S. Nagy, T. Fritioff, A. Solders, R. Schuch, M. Björkhage, I. Bergström, Precision mass measurements of \(^{40}\)Ca\(^{17+}\) and \(^{40}\)Ca\(^{19+}\) ions in a Penning trap. Eur. Phys. J. D - Atom. Mol. Opt. Plasma Phys. 39(1), 1–4 (2006)

    Google Scholar 

  75. F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, D.E. Pritchard, Accurate atomic mass measurements from Penning trap mass comparisons of individual ions. Physica Scripta 1995(T59), 144 (1995)

    Google Scholar 

  76. F. Köhler, K. Blaum, M. Block, S. Chenmarev, S. Eliseev, D.A. Glazov, M. Goncharov, J. Hou, A. Kracke, D.A. Nesterenko, Y.N. Novikov, W. Quint, E. Minaya Ramirez, V.M. Shabaev, S. Sturm, A.V. Volotka, G. Werth, Isotope dependence of the Zeeman effect in lithium-like calcium. Nat. Commun. 7(1), 10246 (2016)

    ADS  Google Scholar 

  77. R.M.E.B. Kandegedara, G. Bollen, M. Eibach, N.D. Gamage, K. Gulyuz, C. Izzo, M. Redshaw, R. Ringle, R. Sandler, A.A. Valverde, \(\beta \)-decay Q values among the A=50 Ti-V-Cr isobaric triplet and atomic masses of \(^{46,47,49,50}{Ti},^{50,51}{V}\), and \(^{50,52-54}Cr\). Phys. Rev. C 96, 044321 (2017). https://doi.org/10.1103/PhysRevC.96.044321

    Article  ADS  Google Scholar 

  78. B.J. Mount, M. Redshaw, E.G. Myers, Atomic masses of \(^{6}{Li},^{23}{Na},^{39,41}{K},^{85,87}{Rb}\), and \(^{133}{Cs}\). Phys. Rev. A 82, 042513 (2010). https://doi.org/10.1103/PhysRevA.82.042513

    Article  ADS  Google Scholar 

  79. R. Rana, M. Höcker, E.G. Myers, Atomic masses of strontium and ytterbium. Phys. Rev. A 86, 050502 (2012). https://doi.org/10.1103/PhysRevA.86.050502

    Article  ADS  Google Scholar 

  80. M. Alanssari, D. Frekers, T. Eronen, L. Canete, J. Dilling, M. Haaranen, J. Hakala, M. Holl, M. Ješkovský, A. Jokinen, A. Kankainen, J. Koponen, A.J. Mayer, I.D. Moore, D.A. Nesterenko, I. Pohjalainen, P. Povinec, J. Reinikainen, S. Rinta-Antila, P.C. Srivastava, J. Suhonen, R.I. Thompson, A. Voss, M.E. Wieser, Single and double beta-decay \({Q}\) values among the triplet \(^{96}{Zr}\), \(^{96}{Nb}\), and \(^{96}{Mo}\). Phys. Rev. Lett. 116, 072501 (2016). https://doi.org/10.1103/PhysRevLett.116.072501

    Article  ADS  Google Scholar 

  81. N.D. Gamage, G. Bollen, M. Eibach, K. Gulyuz, C. Izzo, R.M.E.B. Kandegedara, M. Redshaw, R. Ringle, R. Sandler, A.A. Valverde, Precise determination of the \(^{113}{Cd}\) fourth-forbidden non-unique \(\beta \)-decay \({Q}\) value. Phys. Rev. C 94, 025505 (2016). https://doi.org/10.1103/PhysRevC.94.025505

    Article  ADS  Google Scholar 

  82. B.J. Mount, M. Redshaw, E.G. Myers, \({Q}\) value of \(^{115}{In}\rightarrow ^{115}{Sn}(3/{2}^{+})\): the lowest known energy \(\beta \) decay. Phys. Rev. Lett. 103, 122502 (2009). https://doi.org/10.1103/PhysRevLett.103.122502

    Article  ADS  Google Scholar 

  83. J.S.E. Wieslander, J. Suhonen, T. Eronen, M. Hult, V.-V. Elomaa, A. Jokinen, G. Marissens, M. Misiaszek, M.T. Mustonen, S. Rahaman, C. Weber, J. Äystö, Smallest known \({Q}\) value of any nuclear decay: the rare \({\beta }^{-}\) decay of \(^{115}{In}(9/{2}^{+})\rightarrow ^{115}{Sn}(3/{2}^{+})\). Phys. Rev. Lett. 103, 122501 (2009). https://doi.org/10.1103/PhysRevLett.103.122501

    Article  ADS  Google Scholar 

  84. P. Filianin, S. Schmidt, K. Blaum, M. Block, S. Eliseev, F. Giacoppo, M. Goncharov, F. Lautenschlaeger, Y. Novikov, K. Takahashi, The decay energy of the pure s-process nuclide \(^{123}{Te}\). Phys. Lett. B 758, 407–411 (2016)

    ADS  Google Scholar 

  85. R. Sandler, G. Bollen, J. Dissanayake, M. Eibach, K. Gulyuz, A. Hamaker, C. Izzo, X. Mougeot, D. Puentes, F.G.A. Quarati, M. Redshaw, R. Ringle, I. Yandow, Direct determination of the \(^{138}\)La \(\beta \)-decay \({Q}\) value using Penning trap mass spectrometry. Phys. Rev. C 100, 014308 (2019). https://doi.org/10.1103/PhysRevC.100.014308

    Article  ADS  Google Scholar 

  86. F.G.A. Quarati, G. Bollen, P. Dorenbos, M. Eibach, K. Gulyuz, A. Hamaker, C. Izzo, D.K. Keblbeck, X. Mougeot, D. Puentes, M. Redshaw, R. Ringle, R. Sandler, J. Surbrook, I. Yandow, Measurements and computational analysis on the natural decay of \(^{176}{Lu}\) (2022). https://doi.org/10.48550/arXiv.2207.14195

  87. C. Droese, K. Blaum, M. Block, S. Eliseev, F. Herfurth, E. Minaya Ramirez, Y.N. Novikov, L. Schweikhard, V.M. Shabaev, I.I. Tupitsyn, S. Wycech, K. Zuber, N.A. Zubova, Probing the nuclide \(^{180}{W}\) for neutrinoless double-electron capture exploration. Nucl. Phys. A 875, 1–7 (2012)

    ADS  Google Scholar 

  88. D.L. Bushnell, D.J. Buss, R.K. Smither, \(^{180}{Hf}\) energy levels deduced from thermal and average resonance neutron-capture \(\gamma \)-ray spectra. Phys. Rev. C 10, 2483–2511 (1974). https://doi.org/10.1103/PhysRevC.10.2483

    Article  ADS  Google Scholar 

  89. D.A. Nesterenko, K. Blaum, P. Delahaye, S. Eliseev, T. Eronen, P. Filianin, Z. Ge, M. Hukkanen, A. Kankainen, Y.N. Novikov, A.V. Popov, A. Raggio, M. Stryjczyk, V. Virtanen, Direct determination of the excitation energy of the quasistable isomer \(^{180m}{Ta}\). Phys. Rev. C 106, 024310 (2022). https://doi.org/10.1103/PhysRevC.106.024310

    Article  ADS  Google Scholar 

  90. D.A. Nesterenko, S. Eliseev, K. Blaum, M. Block, S. Chenmarev, A. Dörr, C. Droese, P.E. Filianin, M. Goncharov, E. Minaya Ramirez, Y.N. Novikov, L. Schweikhard, V.V. Simon, Direct determination of the atomic mass difference of \(^{187}{Re}\) and \(^{187}{Os}\) for neutrino physics and cosmochronology. Phys. Rev. C 90, 042501 (2014). https://doi.org/10.1103/PhysRevC.90.042501

    Article  ADS  Google Scholar 

  91. F.A. Danevich, M. Hult, D.V. Kasperovych, V.R. Klavdiienko, G. Lutter, G. Marissens, O.G. Polischuk, V.I. Tretyak, Decay scheme of \(^{50}{V}\). Phys. Rev. C 102, 024319 (2020). https://doi.org/10.1103/PhysRevC.102.024319

    Article  ADS  Google Scholar 

  92. M. Laubenstein, B. Lehnert, S.S. Nagorny, S. Nisi, K. Zuber, New investigation of half-lives for the decay modes of \(^{50}{V}\). Phys. Rev. C 99, 045501 (2019). https://doi.org/10.1103/PhysRevC.99.045501

    Article  ADS  Google Scholar 

  93. M. Haaranen, P.C. Srivastava, J. Suhonen, K. Zuber, \(\beta \)-decay half-life of \(^{50}{V}\) calculated by the shell model. Phys. Rev. C 90, 044314 (2014). https://doi.org/10.1103/PhysRevC.90.044314

    Article  ADS  Google Scholar 

  94. L.W. Mitchell, P.H. Fisher, Rare decays of cadmium and tellurium. Phys. Rev. C 38, 895–899 (1988). https://doi.org/10.1103/PhysRevC.38.895

    Article  ADS  Google Scholar 

  95. C. Goessling, M. Junker, H. Kiel, D. Muenstermann, S. Oehl, K. Zuber, Experimental study of \(^{113}{Cd}\)\(\beta \) decay using CdZnTe detectors. Phys. Rev. C 72, 064328 (2005). https://doi.org/10.1103/PhysRevC.72.064328

    Article  ADS  Google Scholar 

  96. J.V. Dawson, C. Reeve, J.R. Wilson, K. Zuber, M. Junker, C. Gössling, T. Köttig, D. Münstermann, S. Rajek, O. Schulz, An investigation into the \(^{113}{Cd}\) beta decay spectrum using a \({CdZnTe}\) array. Nucl. Phys. A 818(3), 264–278 (2009)

    ADS  Google Scholar 

  97. A. Alessandrello, C. Brofferio, D.V. Camin, O. Cremonesi, F.A. Danevich, Pd. Marcillac, E. Fiorini, A. Giuliani, V.N. Kouts, A.S. Nikolayko, M. Pavan, G. Pessina, E. Previtali, C. Vignoli, L. Zanotti, Y.G. Zdesenko, Bolometric measurement of the beta spectrum of \(^{113}{Cd}\). Nucl. Phys. B - Proc. Suppl. 35, 394–396 (1994)

    ADS  Google Scholar 

  98. F.A. Danevich, A.S. Georgadze, V.V. Kobychev, B.N. Kropivyansky, V.N. Kuts, A.S. Nikolayko, O.A. Ponkratenko, V.I. Tretyak, Y.G. Zdesenko, Beta decay of \(^{113}{Cd}\). Phys. Atom. Nucl. 59, 1–5 (1996)

    ADS  Google Scholar 

  99. P. Belli, R. Bernabei, N. Bukilic, F. Cappella, R. Cerulli, C.J. Dai, F.A. Danevich, JRd. Laeter, A. Incicchitti, V.V. Kobychev, S.S. Nagorny, S. Nisi, F. Nozzoli, D.V. Poda, D. Prosperi, V.I. Tretyak, S.S. Yurchenko, Investigation of \(\beta \) decay of \(^{113}{Cd}\). Phys. Rev. C 76, 064603 (2007). https://doi.org/10.1103/PhysRevC.76.064603

    Article  ADS  Google Scholar 

  100. L. Bodenstein-Dresler, Y. Chu, D. Gehre, C. Gößling, A. Heimbold, C. Herrmann, R. Hodak, J. Kostensalo, K. Kröninger, J. Küttler, C. Nitsch, T. Quante, E. Rukhadze, I. Stekl, J. Suhonen, J. Tebrügge, R. Temminghoff, J. Volkmer, S. Zatschler, K. Zuber, Quenching of \(\text{ g}_{A}\) deduced from the \(\beta \)-spectrum shape of \(^{113}\)Cd measured with the COBRA experiment. Phys. Lett. B 800, 135092 (2020)

    Google Scholar 

  101. J. Kostensalo, J. Suhonen, J. Volkmer, S. Zatschler, K. Zuber, Confirmation of \(\text{ g}_{A}\) quenching using the revised spectrum-shape method for the analysis of the \(^{113}\)Cd \(\beta \)-decay as measured with the COBRA demonstrator. Phys. Lett.B 822, 136652 (2021)

    Google Scholar 

  102. G.B. Beard, W.H. Kelly, Beta decay of naturally radioactive \(^{115}\)In. Phys. Rev. 122(5), 1576–1579 (1961)

    ADS  Google Scholar 

  103. L. Pfeiffer, A.P. Mills, E.A. Chandross, T. Kovacs, Beta spectrum of \(^{115}\)In. Phys. Rev. C 19, 1035–1041 (1979). https://doi.org/10.1103/PhysRevC.19.1035

    Article  ADS  Google Scholar 

  104. M.T. Mustonen, M. Aunola, J. Suhonen, Theoretical description of the fourth-forbidden non-unique \(\beta \) decays of \(^{113}\)Cd and \(^{115}\)In. Phys. Rev. C 73, 054301 (2006). https://doi.org/10.1103/PhysRevC.73.054301

    Article  ADS  Google Scholar 

  105. M.T. Mustonen, J. Suhonen, Microscopic quasiparticle-phonon description of beta decays of \(^{113}\)Cd and \(^{115}\)In using proton-neutron phonons. Phys. Lett. B 657(1), 38–42 (2007)

    ADS  Google Scholar 

  106. J. Tower, L. Winslow, A. Churilov, Y. Ogorodnik, H. Hong, J. Glodo, E. van Loef, A. Giuliani, D. Poda, A. Leder, G.J. Mizell, K. Shah, M.R. Squillante, New scintillating bolometer crystals for rare particle detection. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detect. Assoc. Equip. 954, 162300 (2020)

    Google Scholar 

  107. C.M. Cattadori, M. De Deo, M. Laubenstein, L. Pandola, V.I. Tretyak, Observation of \(\beta \) decay of \(^{115}\)In to the first excited level of \(^{115}\)Sn. Nucl. Phys. A 748(1), 333–347 (2005)

    ADS  Google Scholar 

  108. E. Celi, Z. Galazka, M. Laubenstein, S. Nagorny, L. Pagnanini, S. Pirro, A. Puiu, Development of a cryogenic \(\text{ In}_{2}\,\text{ O}_{3}\) calorimeter to measure the spectral shape of \(^{115}\)In \(\beta \)-decay. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detect. Assoc. Equip. 1033, 166682 (2022)

    Google Scholar 

  109. F.G.A. Quarati, I.V. Khodyuk, C.W.E. van Eijk, P. Quarati, P. Dorenbos, Study of \(^{138}\)La radioactive decays using \(\text{ LaBr}_{3}\) scintillators. Nucl. Instrum. Methods Phys. Res. A 683, 46–52 (2012). https://doi.org/10.1016/j.nima.2012.04.066

    Article  ADS  Google Scholar 

  110. F.G.A. Quarati, P. Dorenbos, X. Mougeot, Experiments and theory of \(^{138}{La}\) radioactive decay. Appl. Radiat. Isot. 108, 30–34 (2016). https://doi.org/10.1016/j.apradiso.2015.11.080

    Article  Google Scholar 

  111. R.L. Brodzinski, D.C. Conway, Decay of \({Rhenium}\)-187. Phys. Rev. 138, 1368–1371 (1965). https://doi.org/10.1103/PhysRev.138.B1368

    Article  ADS  Google Scholar 

  112. E. Huster, H. Verbeek, Das ß-spektrum des natürlichen \({Rhenium}\) 187. Zeitschrift für Physik 203(5), 435–442 (1967)

    ADS  Google Scholar 

  113. K. Ashktorab, J.W. Jänecke, F.D. Becchetti, Beta decay of \(^{187}{Re}\) and cosmochronology. Phys. Rev. C 47, 2954–2960 (1993). https://doi.org/10.1103/PhysRevC.47.2954

    Article  ADS  Google Scholar 

  114. E. Cosulich, G. Gallinaro, F. Gatti, S. Vitale, Detection of \(^{187}\)Re beta decay with a cryogenic microcalorimeter. Preliminary results. Phys. Lett. B 295(1), 143–147 (1992)

    ADS  Google Scholar 

  115. A. Alessandrello, J.W. Beeman, C. Brofferio, O. Cremonesi, E. Fiorini, A. Giuliani, E.E. Haller, B. Margesin, A. Monfardini, A. Nucciotti, M. Pavan, G. Pessina, G. Pignatel, E. Previtali, L. Zanotti, M. Zen, Bolometric measurements of beta decay spectra of \(^{187}\)Re with crystals of silver perrhenate. Phys. Lett. B 457(1), 253–260 (1999)

    ADS  Google Scholar 

  116. M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale, End-point energy and half-life of the \({}^{187}{Re}\)\(\beta \) decay. Phys. Rev. C 63, 014302 (2000). https://doi.org/10.1103/PhysRevC.63.014302

    Article  ADS  Google Scholar 

  117. G. Benedek, E. Fiorini, A. Giuliani, P. Milani, A. Monfardini, A. Nucciotti, M.L. Prandoni, M. Sancrotti, Beta environmental fine structure characterization of defects. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detect. Assoc. Equip. 426(1), 147–155 (1999)

    ADS  Google Scholar 

  118. A.G. Carles, K. Kossert, Measurement of the shape-factor functions of the long-lived radionuclides \(^{87}{Rb}\), \(^{40}{K}\) and \(^{10}{Be}\). Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detect. Assoc. Equip. 572(2), 760–767 (2007)

    ADS  Google Scholar 

  119. MetroBeta Project. http://metrobeta-empir.eu/

  120. PrimaLTD Project. https://prima-ltd.net/home/

  121. T. von Egidy, H. Daniel, P. Hungerford, H.H. Schmidt, K.P. Lieb, B. Krusche, S.A. Kerr, G. Barreau, H.G. Borner, R. Brissot, C. Hofmeyr, R. Rascher, Levels and gamma transitions of \(^{40}{K}\) studied by neutron capture. J. Phys. G: Nucl. Phys. 10(2), 221 (1984)

    ADS  Google Scholar 

  122. B. Krusche, K.P. Lieb, L. Ziegeler, H. Daniel, T. Von Egidy, R. Rascher, G. Barreau, H.G. Börner, D.D. Warner, Spectroscopy of \(^{41}{K}\) by thermal neutron capture in \(^{40}{K}\). Nucl. Phys. A 417(2), 231–255 (1984)

    ADS  Google Scholar 

  123. A. Alessandrello, C. Brofferio, D.V. Camin, P. Caspani, P. Colling, O. Cremonesi, E. Fiorini, A. Giuliani, A. Nucciotti, M. Pavan, G. Pessina, E. Previtali, L. Zanotti, C. Bucci, Evidence for naturally occurring electron capture of \(^{123}{Te}\). Phys. Rev. Lett. 77, 3319–3322 (1996). https://doi.org/10.1103/PhysRevLett.77.3319

    Article  ADS  Google Scholar 

  124. A. Alessandrello, C. Arnaboldi, C. Brofferio, S. Capelli, O. Cremonesi, E. Fiorini, A. Nucciotti, M. Pavan, G. Pessina, S. Pirro, E. Previtali, M. Sisti, M. Vanzini, L. Zanotti, A. Giuliani, M. Pedretti, C. Bucci, C. Pobes, New limits on naturally occurring electron capture of \(^{123}{Te}\). Phys. Rev. C 67, 014323 (2003). https://doi.org/10.1103/PhysRevC.67.014323

    Article  ADS  Google Scholar 

  125. D. Münstermann, K. Zuber, An alternative search for the electron capture of \(^{123}{Te}\). J. Phys. G: Nucl. Part. Phys. 29(2), 1 (2003)

    Google Scholar 

  126. H. Ejiri, T. Shima, K-hindered beta and gamma transition rates in deformed nuclei and the halflife of \(^{180m}{Ta}\). J. Phys. G: Nucl. Part. Phys. 44(6), 065101 (2017)

    ADS  Google Scholar 

  127. W.M. Chan, T. Kishimoto, S. Umehara, K. Matsuoka, K. Suzuki, S. Yoshida, K. Nakajima, T. Iida, K. Fushimi, M. Nomachi et al., Development of CANDLES low background HPGe detector and half-life measurement of \(^{180m}{Ta}\). AIP Conf. Proc. 1921(1), 030004 (2018)

    Google Scholar 

  128. A. Balysh, A. De Silva, V.I. Lebedev, K. Lou, M.K. Moe, M.A. Nelson, A. Piepke, A. Pronskiy, M.A. Vient, P. Vogel, Double beta decay of \(^{48}{Ca}\). Phys. Rev. Lett. 77, 5186–5189 (1996). https://doi.org/10.1103/PhysRevLett.77.5186

    Article  ADS  Google Scholar 

  129. V.B. Brudanin, N.I. Rukhadze, C. Briançon, V.G. Egorov, V.E. Kovalenko, A. Kovalik, A.V. Salamatin, I. Štekl, V.V. Tsoupko-Sitnikov, T. Vylov, P. Čermák, Search for double beta decay of \(^{48}{Ca}\) in the TGV experiment. Phys. Lett. B 495(1), 63–68 (2000). https://doi.org/10.1016/S0370-2693(00)01244-2

    Article  ADS  Google Scholar 

  130. R. Arnold et al., Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of \(^{48}{Ca}\) with the NEMO-3 detector. Phys. Rev. D 93, 112008 (2016). https://doi.org/10.1103/PhysRevD.93.112008

    Article  ADS  Google Scholar 

  131. R. Arnold, C. Augier, J. Baker, A. Barabash, D. Blum, V. Brudanin, A.J. Caffrey, J.E. Campagne, E. Caurier, D. Dassié et al., Double beta decay of \(^{96}{Zr}\). Nucl. Phys. A 658(4), 299–312 (1999)

    ADS  Google Scholar 

  132. J. Argyriades, R. Arnold, C. Augier, J. Baker, A.S. Barabash, A. Basharina-Freshville, M. Bongrand, G. Broudin-Bay, V. Brudanin et al., Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector. Nucl. Phys. A 847(3), 168–179 (2010)

    ADS  Google Scholar 

  133. A. Bakalyarov, A. Balysh, A. Barabash, C. Briançon, V. Brudanin, V. Egorov, F. Hubert, P. Hubert, A. Kovalik, V.I. Lebedev, N.I. Rukhadze, I. Štekl, V. Umatov, T. Vylov, Search for \(\beta ^{-}\) and \(\beta ^{-}\beta ^{-}\) decays of \(^{48}{Ca}\). Nucl. Phys. A 700(1), 17–24 (2002)

    ADS  Google Scholar 

  134. R. Bernabei, P. Belli, F. Cappella, R. Cerulli, F. Montecchia, F. Nozzoli, A. Incicchitti, D. Prosperi, C.J. Dai, V.I. Tretyak, Y.G. Zdesenko, O.A. Ponkratenko, Search for \(\beta \) and \(\beta \beta \) decays in \(^{48}{Ca}\). Nucl. Phys. A 705(1), 29–39 (2002)

    ADS  Google Scholar 

  135. C. Arpesella, A.S. Barabash, E. Bellotti, C. Brofferio, E. Fiorini, P.P. Sverzellati, V.I. Umatov, Search for \(\beta \beta \) decay of \(^{96}{Zr}\) and \(^{150}{Nd}\) to excited states of \(^{96}{Mo}\) and \(^{150}{Sm}\). Europhys. Lett. 27(1), 29 (1994)

    ADS  Google Scholar 

  136. A.S. Barabash, R. Gurriarán, F. Hubert, P. Hubert, J.L. Reyss, J. Suhonen, V.I. Umatov, Investigation of the decay of \(^{96}\)Zr to excited states in \(^{96}{Mo}\). J. Phys. G: Nucl. Part. Phys. 22(4), 487 (1996)

    ADS  Google Scholar 

  137. S.W. Finch, W. Tornow, Search for the \(\beta \) decay of \(^{96}\)Zr. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detect. Assoc. Equip. 806, 70–74 (2016)

    ADS  Google Scholar 

  138. J. Kostensalo, J. Suhonen, Consistent large-scale shell-model analysis of the two-neutrino \(\beta \beta \) and single \(\beta \) branchings in \(^{48}{Ca}\) and \(^{96}{Zr}\). Phys. Lett. B 802, 135192 (2020)

    Google Scholar 

  139. E.K. Warburton, Calculation of the \(^{48}{Ca}(\beta ^{-})^{48}\)Sc decay rate. Phys. Rev. C 31, 1896–1898 (1985). https://doi.org/10.1103/PhysRevC.31.1896

    Article  ADS  Google Scholar 

  140. M. Aunola, J. Suhonen, T. Siiskonen, Shell-model study of the highly forbidden beta decay \(^{48}{Ca}\)\(\rightarrow \)\(^{48}{Sc}\). Europhys. Lett. 46(5), 577 (1999)

    ADS  Google Scholar 

  141. M. Haaranen, M. Horoi, J. Suhonen, Shell-model study of the 4th- and 6th-forbidden \(\beta \)-decay branches of \(^{48}{Ca}\). Phys. Rev. C 89, 034315 (2014). https://doi.org/10.1103/PhysRevC.89.034315

    Article  ADS  Google Scholar 

  142. H. Heiskanen, M.T. Mustonen, J. Suhonen, Theoretical half-life for beta decay of \(^{96}{Zr}\). J. Phys. G: Nucl. Part. Phys. 34(5), 837 (2007)

    Google Scholar 

  143. M. Redshaw, G. Bollen, M. Brodeur, S. Bustabad, D.L. Lincoln, S.J. Novario, R. Ringle, S. Schwarz, Atomic mass and double-\(\beta \)-decay Q value of \(^{48}\)Ca. Phys. Rev. C 86, 041306 (2012). https://doi.org/10.1103/PhysRevC.86.041306

    Article  ADS  Google Scholar 

  144. S. Bustabad, G. Bollen, M. Brodeur, D.L. Lincoln, S.J. Novario, M. Redshaw, R. Ringle, S. Schwarz, A.A. Valverde, First direct determination of the \(^{48}{Ca}\) double-\(\beta \) decay \({Q}\) value. Phys. Rev. C 88, 022501 (2013). https://doi.org/10.1103/PhysRevC.88.022501

    Article  ADS  Google Scholar 

  145. A.A. Kwiatkowski, T. Brunner, J.D. Holt, A. Chaudhuri, U. Chowdhury, M. Eibach, J. Engel, A.T. Gallant, A. Grossheim, M. Horoi, A. Lennarz, T.D. Macdonald, M.R. Pearson, B.E. Schultz, M.C. Simon, R.A. Senkov, V.V. Simon, K. Zuber, J. Dilling, New determination of double-\(\beta \)-decay properties in \({}^{48}{Ca}\): high-precision \({Q}_{\beta \beta }\)-value measurement and improved nuclear matrix element calculations. Phys. Rev. C 89, 045502 (2014). https://doi.org/10.1103/PhysRevC.89.045502

    Article  ADS  Google Scholar 

  146. K. Gulyuz, J. Ariche, G. Bollen, S. Bustabad, M. Eibach, C. Izzo, S.J. Novario, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, A.A. Valverde, Determination of the direct double-\(\beta \)-decay Q value of \(^{96}{Zr}\) and atomic masses of \(^{90-92,94,96}{Zr}\) and \(^{92,94-98,100}{Mo}\). Phys. Rev. C 91, 055501 (2015). https://doi.org/10.1103/PhysRevC.91.055501

    Article  ADS  Google Scholar 

  147. W.R. McMurray, M. Peisach, R. Pretorius, P. Van Der Merwe, I.J. van Heerden, A study of the Ca(\(p, n\))Sc reactions: (I). energy levels in scandium isotopes. Nucl. Phys. A 99(1), 6–16 (1967)

    ADS  Google Scholar 

  148. W.J. McDonald, J.T. Sample, D.M. Sheppard, G.M. Stinson, K.W. Jones, Energy levels of \(^{48}{Sc}\). Phys. Rev. 171, 1254–1257 (1968). https://doi.org/10.1103/PhysRev.171.1254

    Article  ADS  Google Scholar 

  149. B. van Nooijen, J. Konijn, A. Heyligers, J.F. van der Brugge, A.H. Wapstra, On the decay of \(^{48}{Sc}\) and \(^{48}{V}\). Physica 23(6), 753–766 (1957)

    ADS  Google Scholar 

  150. E.G. Myers, A. Wagner, H. Kracke, B.A. Wesson, Atomic masses of Tritium and Helium-3. Phys. Rev. Lett. 114, 013003 (2015). https://doi.org/10.1103/PhysRevLett.114.013003

    Article  ADS  Google Scholar 

  151. S. Eliseev, K. Blaum, M. Block, S. Chenmarev, H. Dorrer, C.E. Düllmann, C. Enss, P.E. Filianin, L. Gastaldo, M. Goncharov, U. Köster, F. Lautenschläger, Y.N. Novikov, A. Rischka, R.X. Schüssler, L. Schweikhard, A. Türler, Direct measurement of the mass difference of \(^{163}{Ho}\) and \(^{163}{Dy}\) solves the Q-value puzzle for the neutrino mass determination. Phys. Rev. Lett. 115, 062501 (2015). https://doi.org/10.1103/PhysRevLett.115.062501

    Article  ADS  Google Scholar 

  152. E. Ferri, D. Bagliani, M. Biasotti, G. Ceruti, D. Corsini, M. Faverzani, F. Gatti, A. Giachero, C. Gotti, C. Kilbourne et al., The status of the MARE experiment with \(^{187}{Re}\) and \(^{163}{Ho}\) isotopes. Phys. Proc. 61, 227–231 (2015)

    ADS  Google Scholar 

  153. Z. Ge, T. Eronen, K.S. Tyrin, J. Kotila, J. Kostensalo, D.A. Nesterenko, O. Beliuskina, R. de Groote, A. de Roubin, S. Geldhof, W. Gins, M. Hukkanen, A. Jokinen, A. Kankainen, A. Koszorús, M.I. Krivoruchenko, S. Kujanpää, I.D. Moore, A. Raggio, S. Rinta-Antila, J. Suhonen, V. Virtanen, A.P. Weaver, A. Zadvornaya, \(^{159}{Dy}\) electron-capture: a new candidate for neutrino mass determination. Phys. Rev. Lett. 127, 272301 (2021). https://doi.org/10.1103/PhysRevLett.127.272301

    Article  Google Scholar 

  154. M.T. Mustonen, J. Suhonen, Nuclear and atomic contributions to beta decays with ultra-low Q-values. J. Phys. G: Nucl. Part. Phys. 37, 064008 (2010). https://doi.org/10.1088/0954-3899/37/6/064008

    Article  ADS  Google Scholar 

  155. D. Motta, C. Buck, F.X. Hartmann, T. Lasserre, S. Schönert, U. Schwan, Prototype scintillator cell for an In-based solar neutrino detector. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detect. Assoc. Equip. 547(2), 368–388 (2005)

    ADS  Google Scholar 

  156. G. Audi, A.H. Wapstra, C. Thibault, The AME2003 atomic mass evaluation: (II). tables, graphs and references. Nucl. Phys. A 729(1), 337–676 (2003)

    ADS  Google Scholar 

  157. J. Blachot, Nuclear data sheets for A = 115. Nucl. Data Sheets 104(4), 967–1110 (2005). https://doi.org/10.1016/j.nds.2005.03.003

    Article  ADS  Google Scholar 

  158. E. Andreotti, M. Hult, R. González de Orduña, G. Marissens, J.S.E. Wieslander, M. Misiaszek, Half-life of the \(\beta \) decay \(^{115}\)In(9/2\(^{+}\)) \(\rightarrow \)\(^{115}\)Sn(3/2\(^{+}\)). Phys. Rev. C 84, 044605 (2011). https://doi.org/10.1103/PhysRevC.84.044605

  159. M.T. Mustonen, J. Suhonen, Beyond low beta-decay Q values. AIP Conf. Proc. 1304, 401 (2010)

    ADS  Google Scholar 

  160. M.R. Harston, N.C. Pyper, Exchange effects in \(\beta \) decays of many-electron atoms. Phys. Rev. A 45, 6282–6295 (1992). https://doi.org/10.1103/PhysRevA.45.6282

    Article  ADS  Google Scholar 

  161. X. Mougeot, M.-M. Bé, C. Bisch, M. Loidl, Corrections for exchange and screening effects in low-energy beta decays. Nucl. Data Sheets 120, 129–132 (2014)

    ADS  Google Scholar 

  162. M. Loidl, C. Le-Bret, M. Rodrigues, X. Mougeot, Evidence for the exchange effect down to very low energy in the beta decays of \(^{63}{Ni}\) and \(^{241}{Pu}\). J. Low Temp. Phys. 176(5), 1040–1045 (2014)

    ADS  Google Scholar 

  163. W. Urban, U. Köster, M. Jentschel, P. Mutti, B. Märkisch, T. Rza̧ca-Urban, C. Bernards, C. Fransen, J. Jolie, T. Thomas, G.S. Simpson, Precise measurement of energies in \(^{115}{Sn}\) following the \((n,\gamma )\) reaction. Phys. Rev. C 94, 011302 (2016). https://doi.org/10.1103/PhysRevC.94.011302

    Article  ADS  Google Scholar 

  164. V.A. Zheltonozhsky, A.M. Savrasov, N.V. Strilchuk, V.I. Tretyak, Precise measurement of energy of the first excited state of \(^{115}{Sn}\) (\(\text{ E}_{exc}\)\(\approx \) 497.3 kev). Europhys. Lett. 121(1), 12001 (2018)

    ADS  Google Scholar 

  165. C.M. Cattadori, M. De Deo, M. Laubenstein, L. Pandola, V.I. Tretyak, Beta decay of \(^{115}\)In to the first excited level of \(^{115}\)Sn: Potential outcome for neutrino mass. Phys. Atom. Nucl. 70(1), 127–132 (2007)

    ADS  Google Scholar 

  166. M.T. Mustonen, J. Suhonen, Theoretical analysis of the possible ultra-low-Q-value decay branch of \(^{135}\)Cs. Phys. Lett. B 703(3), 370–375 (2011). https://doi.org/10.1016/j.physletb.2011.07.088

    Article  ADS  Google Scholar 

  167. J.M. Haaranen, Suhonen: Beta decay of \(^{115}\)Cd and its possible ultra-low Q-value branch. Eur. Phys. J. A 49(7), 93 (2013). https://doi.org/10.1140/epja/i2013-13093-8

    Article  ADS  Google Scholar 

  168. J. Suhonen, Theoretical studies of rare weak processes in nuclei. Physica Scripta 89(5), 054032 (2014). https://doi.org/10.1088/0031-8949/89/5/054032

    Article  ADS  Google Scholar 

  169. J. Kopp, A. Merle, Ultralow Q values for neutrino mass measurements. Phys. Rev. C 81, 045501 (2010)

    ADS  Google Scholar 

  170. N.D. Gamage, R. Bhandari, M.H. Gamage, R. Sandler, M. Redshaw, Identification and investigation of possible ultra-low Q-value \(\beta \)-decay candidates. Hyp. Int. 240, 43 (2019)

    ADS  Google Scholar 

  171. D.K. Keblbeck, R. Bhandari, N.D. Gamage, M. Horana Gamage, K.G. Leach, X. Mougeot, M. Redshaw, Updated evaluation of potential ultra-low \(Q\) value \(\beta \)-decay candidates. Phys. Rev. C 107(1), 015504 (2023). https://doi.org/10.1103/PhysRevC.107.015504.arXiv:2201.08790

  172. M. Ramalho, Z. Ge, T. Eronen, D.A. Nesterenko, J. Jaatinen, A. Jokinen, A. Kankainen, J. Kostensalo, J. Kotila, M.I. Krivoruchenko, J. Suhonen, K.S. Tyrin, V. Virtanen, Observation of an ultralow-Q-value electron-capture channel decaying to \(^{75}{As}\) via a high-precision mass measurement. Phys. Rev. C 106, 015501 (2022). https://doi.org/10.1103/PhysRevC.106.015501

    Article  ADS  Google Scholar 

  173. M. Horana Gamage, R. Bhandari, G. Bollen, N.D. Gamage, A. Hamaker, D. Puentes, M. Redshaw, R. Ringle, S. Schwarz, C.S. Sumithrarachchi, I. Yandow, Identification of a potential ultralow-Q-value electron-capture decay branch in \(^{75}{Se}\) via a precise Penning trap measurement of the mass of \(^{75}{As}\). Phys. Rev. C 106, 065503 (2022). https://doi.org/10.1103/PhysRevC.106.065503

  174. Z. Ge, T. Eronen, A. de Roubin, K.S. Tyrin, L. Canete, S. Geldhof, A. Jokinen, A. Kankainen, J. Kostensalo, J. Kotila, M.I. Krivoruchenko, I.D. Moore, D.A. Nesterenko, J. Suhonen, M. Vilén, High-precision electron-capture Q value measurement of \(^{111}\)In for electron-neutrino mass determination. Phys. Lett. B 832, 137226 (2022)

  175. T. Eronen, Z. Ge, A. de Roubin, M. Ramalho, J. Kostensalo, J. Kotila, O. Beliushkina, C. Delafosse, S. Geldhof, W. Gins, M. Hukkanen, A. Jokinen, A. Kankainen, I.D. Moore, D.A. Nesterenko, M. Stryjczyk, J. Suhonen, High-precision measurement of a low Q value for allowed \(\beta ^{-}\)-decay of \(^{131}\)I related to neutrino mass determination. Phys. Lett. B 830, 137135 (2022)

    Google Scholar 

  176. A. de Roubin, J. Kostensalo, T. Eronen, L. Canete, R.P. de Groote, A. Jokinen, A. Kankainen, D.A. Nesterenko, I.D. Moore, S. Rinta-Antila, J. Suhonen, M. Vilén, High-precision Q-value measurement confirms the potential of \(^{135}{Cs}\) for absolute antineutrino mass scale determination. Phys. Rev. Lett. 124, 222503 (2020). https://doi.org/10.1103/PhysRevLett.124.222503

    Article  ADS  Google Scholar 

  177. Z. Ge, T. Eronen, A. de Roubin, D.A. Nesterenko, M. Hukkanen, O. Beliuskina, R. de Groote, S. Geldhof, W. Gins, A. Kankainen, A. Koszorús, J. Kotila, J. Kostensalo, I.D. Moore, A. Raggio, S. Rinta-Antila, J. Suhonen, V. Virtanen, A.P. Weaver, A. Zadvornaya, A. Jokinen, Direct measurement of the mass difference of \(^{72}{As}\text{- }^{72}{Ge}\) rules out \(^{72}{As}\) as a promising \(\beta \)-decay candidate to determine the neutrino mass. Phys. Rev. C 103, 065502 (2021). https://doi.org/10.1103/PhysRevC.103.065502

    Article  ADS  Google Scholar 

  178. Z. Ge, T. Eronen, A. de Roubin, J. Kostensalo, J. Suhonen, D.A. Nesterenko, O. Beliuskina, R. de Groote, C. Delafosse, S. Geldhof, W. Gins, M. Hukkanen, A. Jokinen, A. Kankainen, J. Kotila, A. Koszorús, I.D. Moore, A. Raggio, S. Rinta-Antila, V. Virtanen, A.P. Weaver, A. Zadvornaya, Direct determination of the atomic mass difference of the pairs \(^{76}{As}\text{- }^{76}{Se}\) and \(^{155}{Tb}\text{- }^{155}{Gd}\) rules out \(^{76}{As}\) and \(^{155}{Tb}\) as possible candidates for electron (anti)neutrino mass measurements. Phys. Rev. C 106, 015502 (2022). https://doi.org/10.1103/PhysRevC.106.015502

    Article  ADS  Google Scholar 

  179. R. Sandler, G. Bollen, N.D. Gamage, A. Hamaker, C. Izzo, D. Puentes, M. Redshaw, R. Ringle, I. Yandow, Investigation of the potential ultralow Q-value \(\beta \)-decay candidates \(^{89}{Sr}\) and \(^{139}{Ba}\) using Penning trap mass spectrometry. Phys. Rev. C 100, 024309 (2019). https://doi.org/10.1103/PhysRevC.100.024309

    Article  ADS  Google Scholar 

  180. N.D. Gamage, R. Sandler, F. Buchinger, J.A. Clark, D. Ray, R. Orford, W.S. Porter, M. Redshaw, G. Savard, K.S. Sharma, A.A. Valverde, Precise Q-value measurements of \(^{112,113}{Ag}\) and \(^{115}{Cd}\) with the Canadian Penning trap for evaluation of potential ultralow Q-value \(\beta \) decays. Phys. Rev. C 106, 045503 (2022). https://doi.org/10.1103/PhysRevC.106.045503

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC002538, and the National Science Foundation under Contract No. 2111302. Support was also provided by Central Michigan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Redshaw.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redshaw, M. Precise Q value determinations for forbidden and low energy \(\beta \)-decays using Penning trap mass spectrometry. Eur. Phys. J. A 59, 18 (2023). https://doi.org/10.1140/epja/s10050-023-00925-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00925-9

Navigation