Skip to main content
Log in

Activation cross-sections of proton induced reactions on natural molybdenum within 75–100 MeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Experimental cross-sections for the nuclear reactions \(^{nat}\)Mo(p,x)\(^{96g(m+),95g,95m,94g,93g(m+)}\)Tc,\(^{99(cum),93m,90(cum)}\)Mo, \(^{96,95m,92m,91m(cum),90g(m+,cum)}\)Nb and \(^{89g(m+,cum),88g(m+,cum),86(cum)}\)Zr were measured up to 100 MeV, carring out at separated sector cyclotron of the Heavy Ion Research Facility in Lanzhou, using the stacked-foil activation technique. The cross-sections of these nuclides in this work fill the gap in 75–100 MeV energy range. In addition, our experimental results were compared with the previously published values taken from EXFOR database and the theoretical calculations predicted by TALYS-1.95 code with six level density models, which are important input parameters affecting the excitation functions. In terms of results, our measurements show good agreement with the theoretical calculations for most of the radionuclides. Level density models still needs to be further optimized in the description of excitation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the datawill not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.].

References

  1. M.U. Khandaker, M.S. Uddin, K.S. Kim, Y.S. Lee, G.N. Kim, Nucl. Instr. Meth. B. 262(2), 171 (2007)

    Article  ADS  Google Scholar 

  2. M.S. Uddin, M. Baba, Appl. Radiat. Isot. 66(2), 208 (2008)

    Article  Google Scholar 

  3. C.L. Briant, M.K. Banerjee, Reference Module in Materials Science and Materials Engineering, (Elsevier, 2016) 8088

  4. S.M. Qaim, Nucl. Med. Biol. 44, 31 (2017)

    Article  Google Scholar 

  5. T.J. Ruth, Annu. Rev. Nucl. Part. Sci. 70, 77 (2020)

    Article  ADS  Google Scholar 

  6. Experimental Nuclear Reaction Data ( EXFOR ). https://www.nndc.bnl.gov/exfor

  7. K. Gagnon, F. Bénard, M. Kovacs, T.J. Ruth, P. Schaffer, J.S. Wilson, S.A. McQuarrie, Nucl. Med. Biol. 38(8), 907 (2011)

    Article  Google Scholar 

  8. P. Chodash, C.T. Angell, J. Benitez, Appl. Radiat. Isot. 69, 1447 (2011)

    Article  Google Scholar 

  9. F. Tárkányi, F. Ditrói, A. Hermanne, S. Takács, A.V. Ignatyuk, Nucl. Instr. Meth. B. 280(1), 45 (2012)

    Article  ADS  Google Scholar 

  10. S.M. Qaim, S. Sudár, B. Scholten, A.J. Koning, H.H. Coenen, Appl. Radiat. Isot. 85, 101 (2014)

    Article  Google Scholar 

  11. S. Takács, A. Hermanne, F. Ditrói, F. Tárkányi, M. Aikawa, Nucl. Instr. Meth. B. 347(1), 26 (2015)

    Article  ADS  Google Scholar 

  12. J. Červenák, O. Lebeda, Nucl. Instr. Meth. B. 380, 32 (2016)

    Article  ADS  Google Scholar 

  13. E. Lamere, M. Couder, M. Beard, A. Simon, A. Simonetti, M. Skulski, G. Seymour, P. Huestis, K. Manukyan, Z. Meisel, L. Morales, M. Moran, S. Moylan, C. Seymour, E. Stech, Phys. Rev. C. 100(3), 034614–1 (2019)

    Article  ADS  Google Scholar 

  14. A. Elbinawi, M. Al-abyad, I. Bashter, U. Seddik, F. Ditrói, Radiochim. Acta. 108(1), 1 (2020)

    Article  Google Scholar 

  15. Reference Input Parameter Library (RIPL-3). https://www-nds.iaea.org/RIPL-3/

  16. A.J. Koning, D. Rochman, J.-Ch. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, Nucl. Data Sheets 155, 1 (2019)

    Article  ADS  Google Scholar 

  17. O. Tarasov, D. Bazin, M. Lewitowicz, O. Sorlin, Nucl. Phys. A. 701(1), 661 (2002)

    Article  ADS  Google Scholar 

  18. A. Hermanne, A.V. Ignatyuk, R. Capote, B.V. Carlson, J.W. Engle, M.A. Kellett, T. Kibédi, G. Kim, F.G. Kondev, M. Hussain, O. Lebeda, A. Luca, Y. Nagai, H. Naik, A.L. Nichols, F.M. Nortier, S.V. Suryanarayana, S. Takács, F.T. Tárkányi, M. Verpelli, Nucl. Data Sheets 148, 338 (2018)

    Article  ADS  Google Scholar 

  19. Nuclear Data Section, InternationalAtomic EnergyAgency (IAEA). https://www-nds.iaea.org/

  20. L.M. Oranj, N.S. Jung, M. Bakhtiari, A. Lee, H. Lee, Phys. Rev. C. 95, 15 (2017)

    Google Scholar 

  21. National Nuclear Data Center, Brookhaven National Laboratory (NuDat). https://www.nndc.bnl.gov/nudat2/chartNuc.jsp

  22. National Nuclear Data Center, Brookhaven National Laboratory (QCalc). https://www.nndc.bnl.gov/qcalc

  23. A. Koning, S. Hilaire, S. Goriely, TALYS-1.95 User Manual (2019)

  24. J. Raynal, Notes on ECIS94, CEA Saclay Report No. CEA-N- 2772 (1994)

  25. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  26. C. Kalbach, Phys. Rev. C. 33, 818 (1986)

    Article  ADS  Google Scholar 

  27. P.A. Moldauer, Phys. Rev. C. 14, 764 (1976)

    Article  ADS  Google Scholar 

  28. P.A. Moldauer, Nucl. Phys. A. 344, 185 (1980)

    Article  ADS  Google Scholar 

  29. S. Parashari, S. Mukherjee, S.V. Suryanarayana, B.K. Nayak, R. Makwana, N.L. Singh, H. Naik, Phys. Rev. C. 99, 044602 (2019)

    Article  ADS  Google Scholar 

  30. A. Gandhi, A. Sharma, Y.N. Kopatch, N.A. Fedorov, D.N. Grozdanov, I.N. Ruskov, A. Kumar, J. Radioanal. Nucl. Chem. 322, 89 (2019)

    Article  Google Scholar 

  31. N. Singh, A. Gandhi, A. Sharma, M. Choudharry, A. Kumar, Indian J. Pure Appl. Phys. 58, 314 (2020)

    Google Scholar 

  32. M.S. Uddin, M. Hagiwara, F. Tarkanyi, F. Ditroi, M. Baba, Appl. Radiat. Isot. 60(6), 911 (2004)

    Article  Google Scholar 

  33. M. Bonardi, C. Birattari, F. Groppt, E. Sabbioni, Appl. Radiat. Isot. 57(02), 617 (2002)

    Article  Google Scholar 

  34. B. Scholten, R.M. Lambrecht, M. Cogneau, H.V. Ruiz, S.M. Qaim, Appl. Radiat. Isot. 51, 69 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere thanks to the staffs of the separated sector cyclotron of the Heavy Ion Research Facility in Lanzhou for their excellent operation of the accelerator and assistance during the irradiation. This research project was financially supported by the National Natural Science Foundation of China (Grants Nos. U1832205, 11875298 and 12005265) and the Science and Technology Plan Project of Gansu Province-Isotope Laboratory of Gansu Province (Grant No. 20JR2RA001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Chen.

Additional information

Communicated by Aurora Tumino.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Liu, B., Han, R. et al. Activation cross-sections of proton induced reactions on natural molybdenum within 75–100 MeV. Eur. Phys. J. A 58, 256 (2022). https://doi.org/10.1140/epja/s10050-022-00904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00904-6

Navigation