Skip to main content
Log in

Dense short muon source based on laser-ion accelerators

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Muons have broad applications in fundamental science such as material science, chemistry, biology, and nuclear physics, which are produced mainly through the proton-nucleon reactions driven by RF-based accelerators in laboratories. However, the cost of improving the muon beam quality on conventional accelerators is increasingly unaffordable. We propose a novel scheme for obtaining an unprecedentedly dense and short muon source by combining the laser-ion accelerator and a conventional beam-converter. With full three-dimensional particle-in-cell (PIC) simulations and Geant4 simulations, it is shown that a mm-scale, several-nanoseconds-duration surface muon source with a yield of \(\sim 10^6/\textrm{shot}\), and a mm-scale, tens-picoseconds-duration flying pion beam with a yield of \(\sim 10^9/\textrm{shot}\) can be achieved via our scheme. These unique properties make the muon beams promising to improve the spatial resolution of muon spin rotation, relaxation, and resonance (\(\upmu SR\)) or single crystals experiments in small samples and the temporal resolution of muon imaging radiography and tomography, together with the sensitivity to rare muon decay investigation. With the increase of laser repetition rate, the laser-driven muon source proposed via our scheme may also be applied for neutrino generation and fusion catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. C.D. Anderson, Early History of Cosmic Ray Studies: Personal Reminiscences with Old Photographs (Springer, Netherlands, 1985), pp.117–132

    Book  Google Scholar 

  2. K. Ninomiya, T. Nagatomo, K. Kubo et al., Bull. Chem. Soc. Jpn 85, 228–230 (2012)

    Article  Google Scholar 

  3. K. Terada, A. Sato, K. Ninomiya et al., Sci. Rep. 7, 1–6 (2017)

    Article  Google Scholar 

  4. M. Aramini, C. Milanese, A.D. Hillier et al., Nanomaterials 10, 1260 (2020)

    Article  Google Scholar 

  5. I. Umegaki, Y. Higuchi, Y. Kondo et al., Anal. Chem. 92, 8194–8200 (2020)

    Article  Google Scholar 

  6. S.E. Jones, A.N. Anderson, A.J. Caffrey et al., Phys. Rev. Lett. 56, 588–591 (1986)

    Article  ADS  Google Scholar 

  7. A. Shahbaz, C. Müller, A. Staudt et al., Phys. Rev. Lett. 98, 263901 (2007)

    Article  ADS  Google Scholar 

  8. Y. Xiang, D. Dong, C. Chen, Proc., IEEE 16th Int. Conf. Netw. Sens. Control ICNSC 2019(IEEE2019), 335–339 (2019)

  9. S. Giblin, S. Cottrell, P. King et al., Nucl. Instrum. Methods Phys. Res., Sect. A 751, 70–78 (2014)

  10. B. Suerfu, C.G. Tully, J. Instrum. 11, P02015 (2016)

    Article  Google Scholar 

  11. K. Morishima, M. Kuno, A. Nishio et al., Nature 552, 386–390 (2017)

    Article  ADS  Google Scholar 

  12. C. Li, X. Cao, P. Kuang et al., Phys. Scr. 96, 125305 (2021)

    Article  ADS  Google Scholar 

  13. T. Gorringe, D. Hertzog, Prog. Part. Nucl. Phys. 84, 73–123 (2015)

    Article  ADS  Google Scholar 

  14. T. Aoyama, N. Asmussen, M. Benayoun et al., Phys. Rep. 887, 1–166 (2020)

    Article  ADS  Google Scholar 

  15. R.H. Bernstein, Front. Phys. 7, 1 (2019)

    Article  Google Scholar 

  16. C. Patrignani and othters, Chin. Phys.C 40, 100001 (2016)

  17. T. Matsuzaki, K. Ishida, K. Nagamine et al., Nucl. Instrum. Meth. A 465, 365–383 (2001)

    Article  ADS  Google Scholar 

  18. R. Abela, C. Baines, X. Donath et al., Hyperfine Interact. 87, 1105–1110 (1994)

    Article  ADS  Google Scholar 

  19. K. Nakahara, Y. Miyake, K. Shimomura et al., Nucl. Instrum. Meth. A 600, 132–134 (2009)

    Article  ADS  Google Scholar 

  20. G. Marshall, Z. Phys, C - Particles and Fields 56, S226–S231 (1992)

    Article  Google Scholar 

  21. B.S. Rao, J.H. Jeon, H.T. Kim, C.H. Nam, Plasma Phys. Control. Fusion 60, 095002 (2018)

    Article  ADS  Google Scholar 

  22. X. Wang, X. Liu, X. Lu et al., Ultrafast Sci. 2022 (2022)

  23. M. Borghesi, A. Mackinnon, D.H. Campbell et al., Phys. Rev. Lett. 92, 055003 (2004)

    Article  ADS  Google Scholar 

  24. H. Ruhl, T. Cowan, J. Fuchs, Phys. Plasmas 11, L17–L20 (2004)

    Article  ADS  Google Scholar 

  25. J. Schreiber, M. Kaluza, F. Grüner et al., Appl. Phys. B 79, 1041–1045 (2004)

    Article  ADS  Google Scholar 

  26. T. Cowan, J. Fuchs, H. Ruhl et al., Phys. Rev. Lett. 92, 204801 (2004)

    Article  ADS  Google Scholar 

  27. M. Roth, E. Brambrink, P. Audebert et al., Plasma Phys. Control. Fusion 47, B841 (2005)

    Article  Google Scholar 

  28. M. Roth, P. Audebert, A. Blazevic et al., Opt. Commun. 264, 519–524 (2006)

    Article  ADS  Google Scholar 

  29. F. Nürnberg, M. Schollmeier, E. Brambrink et al., Rev. Sci. Instrum. 80, 033301 (2009)

    Article  ADS  Google Scholar 

  30. H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)

    Article  ADS  Google Scholar 

  31. I.J. Kim, K.H. Pae, I.W. Choi et al., Phys. Plasmas 23, 070701 (2016)

    Article  ADS  Google Scholar 

  32. F. Wagner, O. Deppert, C. Brabetz et al., Phys. Rev. Lett. 116, 205002 (2016)

    Article  ADS  Google Scholar 

  33. V. Tripathi, T.-C. Liu, X. Shao, Matter Radiat. Extremes 2, 256–262 (2017)

    Google Scholar 

  34. A. Higginson, R. Gray, M. King et al., Nat. Commun. 9, 1–9 (2018)

    Article  Google Scholar 

  35. S. Weng, Z. Sheng, M. Murakami et al., Matter Radiat. Extremes 3, 28–39 (2018)

    Google Scholar 

  36. Y.X. Geng, D. Wu, W. Yu et al., Matter Radiat. Extremes 5, 064402 (2020)

    Google Scholar 

  37. X. Jiang, D. Zou, Z. Zhao et al., Phys. Rev. Appl. 15, 034032 (2021)

    Article  ADS  Google Scholar 

  38. D. Hongxiang, S. Rong, L.-X. Hu et al., Plasma Phys (Control, Fusion, 2022)

    Google Scholar 

  39. D. Kolenatỳ, P. Hadjisolomou, R. Versaci et al., Phys. Rev. Res. 4, 023124 (2022)

    Article  Google Scholar 

  40. Y. Xiao, C. Feng and B. Liu, Ultrafast Sci. 2022 (2022)

  41. Z. Ma, H. Lan, W. Liu et al., Matter Radiat. Extremes 4, 064401 (2019)

    Google Scholar 

  42. F. Pegoraro, S.V. Bulanov, Phys. Rev. Lett. 99, 065002 (2007)

    Article  ADS  Google Scholar 

  43. A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei, New J. Phys. 10, 013021 (2008)

    Article  ADS  Google Scholar 

  44. S. V. Bulanov, T. Z. Esirkepov, M. Kando et al., Phys. Rev. Lett. 104 (2010)

  45. T.-P. Yu, A. Pukhov, G. Shvets, M. Chen, Phys. Rev. Lett. 105, 065002 (2010)

    Article  ADS  Google Scholar 

  46. T. Yu, A. Pukhov, G. Shvets et al., Phys. Plasmas 18, 043110 (2011)

    Article  ADS  Google Scholar 

  47. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751–793 (2013)

    Article  ADS  Google Scholar 

  48. T. Arber, K. Bennett, C. Brady et al., Plasma Phys. Control. Fusion 57, 113001 (2015)

    Article  ADS  Google Scholar 

  49. S. Agostinelli, J. Allison, K. Amako et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003)

  50. M. Lynch, S. Cottrell, P. King and G. Eaton, Phys. B (Amsterdam, Neth.) 326, 270–274 (2003)

  51. A. Bungau, R. Cywinski, C. Bungau, P. King, J. Lord, Phys. Rev. ST Accel. Beams 16, 014701 (2013)

    Article  ADS  Google Scholar 

  52. C. N. Danson, C. Haefner, J. Bromage et al., High Power Laser Sci. Eng. 7 (2019)

  53. Y. Kitagawa, H. Fujita, R. Kodama et al., IEEE J. Quantum Electron. 40, 281–293 (2004)

    Article  ADS  Google Scholar 

  54. A.V. Bashinov, A.A. Gonoskov, A.V. Kim et al., Eur. Phys. J. Special Topics 223, 1105–1112 (2014)

    Article  ADS  Google Scholar 

  55. B. Shaw, S. Steinke, J. van Tilborg, W.P. Leemans, Phys. Plasmas 23, 063118–063118 (2016)

    Article  ADS  Google Scholar 

  56. J. Bin, L. Obst-Huebl, J.-H. Mao et al., Sci. Rep. 12, 1–15 (2022)

    Article  Google Scholar 

  57. Y. Hadad, L. Labun, J. Rafelski et al., Phys. Rev. D 82, 096012 (2010)

    Article  ADS  Google Scholar 

  58. R.T. Hammond, Phys. Rev. A 81, 062104 (2010)

    Article  ADS  Google Scholar 

  59. P. Braun-Munzinger, J. Stachel, Annu. Rev. Nucl. Part. Sci. 37, 97–131 (1987)

    Article  ADS  Google Scholar 

  60. H.W. Bertini, Phys. Rev. 131, 1801 (1963)

    Article  ADS  Google Scholar 

  61. H.W. Bertini, Phys. Rev. 188, 1711 (1969)

    Article  ADS  Google Scholar 

  62. A. Heikkinen, N. Stepanov and J. P. Wellisch (2003), arXiv:nucl-th/0306008

  63. D. Wright and M. Kelsey, Nucl. Instrum. Methods Phys. Res., Sect. A 804, 175–188 (2015)

  64. A. Bungau, R. Cywinski, C. Bungau et al., Phys. Rev. ST Accel. Beams 17, 034701 (2014)

    Article  ADS  Google Scholar 

  65. T. Esirkepov, M. Borghesi, S. Bulanov, G. Mourou, T. Tajima, Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  66. E. Henley, T. Lee, Phys. Rev. 101, 1536 (1956)

    Article  ADS  Google Scholar 

  67. S. Lindenbaum, R. Sternheimer, Phys. Rev. 105, 1874 (1957)

    Article  ADS  Google Scholar 

  68. R. Sternheimer, S. Lindenbaum, Phys. Rev. 109, 1723 (1958)

    Article  ADS  Google Scholar 

  69. R. Sternheimer, S. Lindenbaum, Phys. Rev. 123, 333 (1961)

    Article  ADS  Google Scholar 

  70. W. Fickinger, E. Pickup, D. Robinson, E. Salant, Phys. Rev. 125, 2082 (1962)

    Article  ADS  Google Scholar 

  71. A. Hillier, D. Adams, P. Baker et al., J. Phys.: Conf. Ser., (IOP Publishing,2014), volume 551, 012067

  72. P.C. Bergbusch, D.S. Armstrong, M. Blecher et al., Phys. Rev. C 59, 2853–2864 (1999)

    Article  ADS  Google Scholar 

  73. T. C. Collaboration, R. Abramishvili, G. Adamov, R. R. Akhmetshin et al., Prog. Theor. Exp. Phys. 2020, 033C01 (2020)

  74. D. V. Neuffer, Target studies for mu2e-ii, Technical report, Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States) (2019)

  75. J. Lathrop, R. Lundy, V. Telegdi, R. Winston, D. Yovanovitch, Phys. Rev. Lett. 7, 107 (1961)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R &D Program of China (Grant No. 2018YFA0404802), National Natural Science Foundation of China (Grant Nos. 11875319 and 12135009), The Science and Technology Innovation Program of Hunan Province (Grant No. 2020RC4020), The Hunan Provincial Innovation Foundation for Postgraduate (Grant Nos. CX20210007 and CX20210062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong-Pu Yu.

Additional information

Communicated by Jose Benlliure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, R., Cheng, JH., Li, DA. et al. Dense short muon source based on laser-ion accelerators. Eur. Phys. J. A 58, 249 (2022). https://doi.org/10.1140/epja/s10050-022-00900-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00900-w

Navigation