Skip to main content
Log in

\(B_c\) meson spectroscopy motivated by general features of pNRQCD

  • Regular Article - Theoretical Phyics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present article the mass spectrum, decay constant, weak decay widths, life time and branching fraction ratios and electromagnetic transition widths are calculated for ground and radially excited \(B_c\) meson. To calculate the above properties the Schrödinger equation has been solved numerically for the potential. The potential employed consists of relativistic correction in the framework of pNRQCD, added to the Cornell potential. The calculated results are compared with available experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Other than the data in the tables provided in the article, there is no other data available.]

References

  1. F. Abe et al., Phys. Rev. Lett. 81, 2432 (1998). https://doi.org/10.1103/PhysRevLett.81.2432

    Article  ADS  Google Scholar 

  2. A. Abulencia et al., Phys. Rev. Lett. 96, 082002 (2006). https://doi.org/10.1103/PhysRevLett.96.082002

    Article  ADS  Google Scholar 

  3. T. Aaltonen et al., Phys. Rev. Lett. 100, 182002 (2008). https://doi.org/10.1103/PhysRevLett.100.182002

    Article  ADS  Google Scholar 

  4. V.M. Abazov et al., Phys. Rev. Lett. 101, 012001 (2008). https://doi.org/10.1103/PhysRevLett.101.012001

    Article  ADS  Google Scholar 

  5. R. Aaij et al., Phys. Rev. Lett. 109, 232001 (2012). https://doi.org/10.1103/PhysRevLett.109.232001

    Article  ADS  Google Scholar 

  6. G. Aad et al., Phys. Rev. Lett. 113(21), 212004 (2014). https://doi.org/10.1103/PhysRevLett.113.212004

    Article  ADS  Google Scholar 

  7. A.M. Sirunyan et al., Phys. Rev. Lett. 122(13), 132001 (2019). https://doi.org/10.1103/PhysRevLett.122.132001

    Article  ADS  Google Scholar 

  8. R. Aaij et al., Phys. Rev. Lett. 122(23), 232001 (2019). https://doi.org/10.1103/PhysRevLett.122.232001

    Article  ADS  Google Scholar 

  9. A.M. Sirunyan et al., Phys. Rev. D 102(9), 092007 (2020). https://doi.org/10.1103/PhysRevD.102.092007

    Article  ADS  Google Scholar 

  10. B. Martín-González, P.G. Ortega, D.R. Entem, F. Fernández, J. Segovia (2022). arXiv:2205.05950

  11. G.L. Wang, T. Wang, Q. Li, C.H. Chang, JHEP 05, 006 (2022). https://doi.org/10.1007/JHEP05(2022)006

    Article  ADS  Google Scholar 

  12. L. Tang, T.y. Li, C.h. Wang, C.q. Pang, X. Liu (2022). arXiv:2204.14258v1

  13. H. Mansour, A. Gamal, Results Phys. 33, 105203 (2022). https://doi.org/10.1016/j.rinp.2022.105203

    Article  Google Scholar 

  14. C.H. Chang, Y.Q. Chen, Phys. Rev. D 46, 3845 (1992). https://doi.org/10.1103/PhysRevD.46.3845. [Erratum: Phys. Rev. D 50, 6013 (1994)]

  15. C.H. Chang, Y.Q. Chen, Phys. Lett. B 284, 127 (1992). https://doi.org/10.1016/0370-2693(92)91937-5

    Article  ADS  Google Scholar 

  16. E. Braaten, Km. Cheung, T.C. Yuan, Phys. Rev. D 48(11), R5049 (1993). https://doi.org/10.1103/PhysRevD.48.R5049

    Article  ADS  Google Scholar 

  17. K. Cheung, Phys. Rev. Lett. 71, 3413 (1993). https://doi.org/10.1103/PhysRevLett.71.3413

    Article  ADS  Google Scholar 

  18. C.H. Chang, Y.Q. Chen, Phys. Rev. D 48, 4086 (1993). https://doi.org/10.1103/PhysRevD.48.4086

    Article  ADS  Google Scholar 

  19. C.H. Chang, Y.Q. Chen, G.L. Wang, H.S. Zong, Phys. Rev. D 65, 014017 (2002). https://doi.org/10.1103/PhysRevD.65.014017

    Article  ADS  Google Scholar 

  20. P. Colangelo, F. De Fazio, Phys. Rev. D 61, 034012 (2000). https://doi.org/10.1103/PhysRevD.61.034012

    Article  ADS  Google Scholar 

  21. C.F. Qiao, P. Sun, D. Yang, R.L. Zhu, Phys. Rev. D 89(3), 034008 (2014). https://doi.org/10.1103/PhysRevD.89.034008

    Article  ADS  Google Scholar 

  22. M.A. Ivanov, J.G. Korner, P. Santorelli, Phys. Rev. D 73, 054024 (2006). https://doi.org/10.1103/PhysRevD.73.054024

    Article  ADS  Google Scholar 

  23. C.H. Chang, Y.Q. Chen, Phys. Rev. D 49, 3399 (1994). https://doi.org/10.1103/PhysRevD.49.3399

    Article  ADS  Google Scholar 

  24. V.V. Kiselev, A.V. Tkabladze, Phys. Rev. D 48, 5208 (1993). https://doi.org/10.1103/PhysRevD.48.5208

    Article  ADS  Google Scholar 

  25. J.F. Liu, K.T. Chao, Phys. Rev. D 56, 4133 (1997). https://doi.org/10.1103/PhysRevD.56.4133

    Article  ADS  Google Scholar 

  26. V.V. Kiselev, A.E. Kovalsky, A.K. Likhoded, Nucl. Phys. B 585, 353 (2000). https://doi.org/10.1016/S0550-3213(00)00386-2

    Article  ADS  Google Scholar 

  27. E.B. Gregory, C.T.H. Davies, E. Follana, E. Gamiz, I.D. Kendall, G.P. Lepage, H. Na, J. Shigemitsu, K.Y. Wong, Phys. Rev. Lett. 104, 022001 (2010). https://doi.org/10.1103/PhysRevLett.104.022001

    Article  ADS  Google Scholar 

  28. R.J. Dowdall, C.T.H. Davies, T.C. Hammant, R.R. Horgan, Phys. Rev. D 86, 094510 (2012). https://doi.org/10.1103/PhysRevD.86.094510

    Article  ADS  Google Scholar 

  29. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985). https://doi.org/10.1103/PhysRevD.32.189

    Article  ADS  Google Scholar 

  30. Y.Q. Chen, Y.P. Kuang, Phys. Rev. D 46, 1165 (1992). https://doi.org/10.1103/PhysRevD.47.350. [Erratum: Phys. Rev. D 47, 350 (1993)]

  31. L.P. Fulcher, Phys. Rev. D 60, 074006 (1999). https://doi.org/10.1103/PhysRevD.60.074006

    Article  ADS  Google Scholar 

  32. S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.V. Tkabladze, Phys. Rev. D 51, 3613 (1995). https://doi.org/10.1103/PhysRevD.51.3613

    Article  ADS  Google Scholar 

  33. J. Zeng, J.W. Van Orden, W. Roberts, Phys. Rev. D 52, 5229 (1995)

    Article  ADS  Google Scholar 

  34. S.N. Gupta, J.M. Johnson, Phys. Rev. D 53, 312 (1996). https://doi.org/10.1103/PhysRevD.53.312

    Article  ADS  Google Scholar 

  35. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027 (2003). https://doi.org/10.1103/PhysRevD.67.014027

    Article  ADS  Google Scholar 

  36. S.M. Ikhdair, R. Sever, Int. J. Mod. Phys. A 19, 1771 (2004). https://doi.org/10.1142/S0217751X0401780X

    Article  ADS  Google Scholar 

  37. S. Godfrey, Phys. Rev. D 70, 054017 (2004). https://doi.org/10.1103/PhysRevD.70.054017

    Article  ADS  Google Scholar 

  38. S.M. Ikhdair, R. Sever, Int. J. Mod. Phys. A 20, 4035 (2005). https://doi.org/10.1142/S0217751X05022275

    Article  ADS  Google Scholar 

  39. G. Aad et al., Eur. Phys. J. C 81(12), 1118 (2021). https://doi.org/10.1140/epjc/s10052-021-09749-7

    Article  ADS  Google Scholar 

  40. Z.G. Wang, Eur. Phys. J. C 73(9), 2559 (2013). https://doi.org/10.1140/epjc/s10052-013-2559-7

    Article  ADS  Google Scholar 

  41. L. Chang, M. Chen, X. qian Li, Y. xin Liu, K. Raya, Few-Body Syst. 62, 1 (2021). https://doi.org/10.1007/s00601-020-01586-w

  42. M. Chen, L. Chang, Yx. Liu, Phys. Rev. D 101(5), 056002 (2020). https://doi.org/10.1103/PhysRevD.101.056002

    Article  ADS  Google Scholar 

  43. P.L. Yin, C. Chen, Ga. Krein, C.D. Roberts, J. Segovia, S.S. Xu, Phys. Rev. D 100(3), 034008 (2019). https://doi.org/10.1103/PhysRevD.100.034008

    Article  ADS  Google Scholar 

  44. N. Brambilla, A. Vairo, Phys. Rev. D 62, 094019 (2000). https://doi.org/10.1103/PhysRevD.62.094019

    Article  ADS  Google Scholar 

  45. A.A. Penin, A. Pineda, V.A. Smirnov, M. Steinhauser, Phys. Lett. B 593, 124 (2004). https://doi.org/10.1016/j.physletb.2004.04.066. [Erratum: Phys. Lett. B 677, 343 (2009)]

  46. C. Peset, A. Pineda, J. Segovia, J. High Energy Phys. 2018(9) (2018). https://doi.org/10.1007/jhep09(2018)167

  47. C. Peset, A. Pineda, J. Segovia, Phys. Rev. D 98(9), 094003 (2018). https://doi.org/10.1103/PhysRevD.98.094003

    Article  ADS  Google Scholar 

  48. I.F. Allison, C.T.H. Davies, A. Gray, A.S. Kronfeld, P.B. Mackenzie, J.N. Simone, Phys. Rev. Lett. 94, 172001 (2005). https://doi.org/10.1103/PhysRevLett.94.172001

    Article  ADS  Google Scholar 

  49. N. Mathur, M. Padmanath, S. Mondal, Phys. Rev. Lett. 121(20), 202002 (2018). https://doi.org/10.1103/PhysRevLett.121.202002

    Article  ADS  Google Scholar 

  50. V. Sauli, Phys. Rev. D 86, 096004 (2012). https://doi.org/10.1103/PhysRevD.86.096004

    Article  ADS  Google Scholar 

  51. S. Leitão, A. Stadler, M.T. Peña, E.P. Biernat, Phys. Rev. D 90(9), 096003 (2014). https://doi.org/10.1103/PhysRevD.90.096003

    Article  ADS  Google Scholar 

  52. C.S. Fischer, S. Kubrak, R. Williams, Eur. Phys. J. A 51, 10 (2015). https://doi.org/10.1140/epja/i2015-15010-7

    Article  ADS  Google Scholar 

  53. W.J. Deng, H. Liu, L.C. Gui, X.H. Zhong, Phys. Rev. D 95(3), 034026 (2017). https://doi.org/10.1103/PhysRevD.95.034026

    Article  ADS  Google Scholar 

  54. W.J. Deng, H. Liu, L.C. Gui, X.H. Zhong, Phys. Rev. D 95(7), 074002 (2017). https://doi.org/10.1103/PhysRevD.95.074002

    Article  ADS  Google Scholar 

  55. J. Segovia, P.G. Ortega, D.R. Entem, F. Fernández, Phys. Rev. D 93(7), 074027 (2016). https://doi.org/10.1103/PhysRevD.93.074027

    Article  ADS  Google Scholar 

  56. N.R. Soni, B.R. Joshi, R.P. Shah, H.R. Chauhan, J.N. Pandya, Eur. Phys. J. C 78(7), 592 (2018). https://doi.org/10.1140/epjc/s10052-018-6068-6

    Article  ADS  Google Scholar 

  57. N. Devlani, V. Kher, A.K. Rai, Eur. Phys. J. A 50(10), 154 (2014). https://doi.org/10.1140/epja/i2014-14154-2

    Article  ADS  Google Scholar 

  58. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011). https://doi.org/10.1140/epjc/s10052-010-1534-9

    Article  ADS  Google Scholar 

  59. N. Brambilla et al., Eur. Phys. J. C 74(10), 2981 (2014). https://doi.org/10.1140/epjc/s10052-014-2981-5

    Article  Google Scholar 

  60. R. Chaturvedi, A.K. Rai, Int. J. Theor. Phys. 59(11), 3508 (2020). https://doi.org/10.1007/s10773-020-04613-y

    Article  Google Scholar 

  61. R. Chaturvedi, N.R. Soni, J.N. Pandya, A.K. Rai, J. Phys. G 47(11), 115003 (2020). https://doi.org/10.1088/1361-6471/abaa99

    Article  ADS  Google Scholar 

  62. N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978). https://doi.org/10.1103/PhysRevD.18.4187

    Article  ADS  Google Scholar 

  63. K.B. Vijaya Kumar, A.K. Rath, S.B. Khadkikar, Pramana 48, 997 (1997). https://doi.org/10.1007/BF02847459

    Article  ADS  Google Scholar 

  64. S.N. Gupta, J.M. Johnson, Phys. Rev. D 51, 168 (1995). https://doi.org/10.1103/PhysRevD.51.168

    Article  ADS  Google Scholar 

  65. Y. Koma, M. Koma, Few-Body Syst. 54, 5 (2013). https://doi.org/10.1007/s00601-012-0542-8

  66. C. Patrignani et al., Chin. Phys. C 40(10), 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

    Article  ADS  Google Scholar 

  67. A. Parmar, B. Patel, P.C. Vinodkumar, Nucl. Phys. A 848, 299 (2010). https://doi.org/10.1016/j.nuclphysa.2010.08.016

    Article  ADS  Google Scholar 

  68. A.K. Rai, B. Patel, P.C. Vinodkumar, Phys. Rev. C 78, 055202 (2008). https://doi.org/10.1103/PhysRevC.78.055202

    Article  ADS  Google Scholar 

  69. B. Patel, P.C. Vinodkumar, J. Phys. G36, 035003 (2009). https://doi.org/10.1088/0954-3899/36/3/035003

    Article  ADS  Google Scholar 

  70. R. Van Royen, V.F. Weisskopf, Nuovo Cim. A 50, 617 (1967). https://doi.org/10.1007/BF02823542. [Erratum: Nuovo Cim.A 51, 583 (1967)]

  71. E. Braaten, S. Fleming, Phys. Rev. D 52, 181 (1995). https://doi.org/10.1103/PhysRevD.52.181

    Article  ADS  Google Scholar 

  72. A.V. Berezhnoy, V.V. Kiselev, A.K. Likhoded, Z. Phys. A 356, 89 (1996). https://doi.org/10.1007/s002180050152

    Article  ADS  Google Scholar 

  73. A. Abd El-Hady, M.A.K. Lodhi, J.P. Vary, Phys. Rev. D 59, 094001 (1999)

    Article  ADS  Google Scholar 

  74. C.H. Chang, J.P. Cheng, C.D. Lu, Phys. Lett. B 425, 166 (1998). https://doi.org/10.1016/S0370-2693(98)00177-4

    Article  ADS  Google Scholar 

  75. S.F. Radford, W.W. Repko, Nucl. Phys. A 865, 69 (2011). https://doi.org/10.1016/j.nuclphysa.2011.06.032

    Article  ADS  Google Scholar 

  76. E. Eichten, K. Gottfried, T. Kinoshita, J.B. Kogut, K.D. Lane, T.M. Yan, Phys. Rev. Lett. 34, 369 (1975). https://doi.org/10.1103/PhysRevLett.34.369. [Erratum: Phys. Rev. Lett.36,1276(1976)]

  77. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978). https://doi.org/10.1103/PhysRevD.17.3090. [Erratum: Phys. Rev. D21,313(1980)]

  78. J.N. Pandya, N.R. Soni, N. Devlani, A.K. Rai, Chin. Phys. C 39(12), 123101 (2015). https://doi.org/10.1088/1674-1137/39/12/123101

    Article  ADS  Google Scholar 

  79. C.T.H. Davies, K. Hornbostel, G.P. Lepage, A.J. Lidsey, J. Shigemitsu, J.H. Sloan, Phys. Lett. B 382, 131 (1996). https://doi.org/10.1016/0370-2693(96)00650-8

    Article  ADS  Google Scholar 

  80. D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 71, 1825 (2011). https://doi.org/10.1140/epjc/s10052-011-1825-9

    Article  ADS  Google Scholar 

  81. P.A. Zyla et al., PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

    Article  Google Scholar 

  82. A.K. Rai, P.C. Vinodkumar, Pramana 66, 953 (2006). https://doi.org/10.1007/BF02704795

    Article  ADS  Google Scholar 

  83. N. Akbar, Phys. Atom. Nucl. 83(6), 899 (2020). https://doi.org/10.1134/S1063778820060034

    Article  ADS  Google Scholar 

  84. E.V. Veliev, K. Azizi, H. Sundu, N. Aksit, J. Phys. G39, 015002 (2012). https://doi.org/10.1088/0954-3899/39/1/015002

    Article  ADS  Google Scholar 

  85. N. Akbar. Decay properties of conventional and hybrid \(b_c\) mesons (2020). https://doi.org/10.48550/ARXIV.2003.08491. arXiv:2003.08491

  86. M. Shah, R. Patel, B. Pandya, A. Majethiya, P.C. Vinodkumar, in 65th DAE BRNS Symposium on nuclear physics (2022)

  87. C.H. Chang, C.D. Lu, G.L. Wang, H.S. Zong, Phys. Rev. D 60, 114013 (1999). https://doi.org/10.1103/PhysRevD.60.114013

    Article  ADS  Google Scholar 

  88. D. Ebert, R.N. Faustov, V.O. Galkin, Mod. Phys. Lett. A 18, 1597 (2003). https://doi.org/10.1142/S0217732303011307

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghav Chaturvedi.

Additional information

Communicated by Heng-Tong Ding.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, R., Rai, A.K. \(B_c\) meson spectroscopy motivated by general features of pNRQCD. Eur. Phys. J. A 58, 228 (2022). https://doi.org/10.1140/epja/s10050-022-00884-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00884-7

Navigation