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Abstract Using a Poincaré-covariant quark+diquark Fad-
deev equation and related symmetry-preserving
weak interaction current, we deliver parameter-free predic-
tions for the nucleon axialvector form factor, GA(Q2), on the
domain 0 ≤ x = Q2/m2

N ≤ 10, where mN is the nucleon
mass. We also provide a detailed analysis of the flavour sep-
aration of the proton GA into contributions from valence
u and d quarks; and with form factors available on such a
large Q2 domain, predictions for the flavour-separated axial-
charge light-front transverse spatial density profiles. Our cal-
culated axial charge ratio gdA/guA = −0.32(2) is consistent
with available experimental data and markedly larger in mag-
nitude than the value typical of nonrelativistic quark models.
The value of this ratio is sensitive to the strength of axialvec-
tor diquark correlations in the Poincaré-covariant nucleon
wave function. Working with a realistic axialvector diquark
content, the d and u quark transverse density profiles are
similar. Some of these predictions could potentially be tested
with new data on threshold pion electroproduction from the
proton at large Q2.

1 Introduction

Electroweak interactions of the nucleon are described by four
form factors. The Dirac and Pauli form factors, F1,2, which
are key to understanding electromagnetic interactions, have
long been probed by experiment and analysed by theory [1–
3]. Poincaré-invariant predictions now exist out to momen-
tum transfers Q2 ≈ 20 GeV2 [4] and will be tested in forth-
coming experiments [5]. Of particular interest are data on
the flavour separation of these form factors [6,7], which have
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the potential to validate the predicted roles of nonpointlike
quark+quark (diquark) correlations within the nucleon [8].

The nucleon’s axial current is also characterised by two
form factors:

J j
5μ(K , Q) := 〈N (Pf )|A j

5μ(0)|N (Pi )〉 (1a)

= ū(Pf )
τ j

2
γ5

[
γμGA(Q2) + i Qμ

2mN
GP (Q2)

]
u(Pi ) ,

(1b)

where we have assumed isospin symmetry; Pi and Pf are,
respectively, the initial and final momenta of the nucleon(s)
involved, defined such that the on-shell condition is fulfilled,
P2
i, f = −m2

N , with mN the nucleon mass; {τ i |i = 1, 2, 3}
are Pauli matrices; and K = (Pf + Pi )/2, Q = (Pf − Pi ).
In Eq. (1), GA(Q2) is the axial form factor and GP (Q2) is
the induced pseudoscalar form factor. These two functions
are far less well known than F1,2.

This is an issue because, amongst other things, the anal-
ysis and reliable interpretation of modern neutrino exper-
iments relies on sound theoretical knowledge of neutrino/
antineutrino-nucleus (ν/ν̄-A) interactions [9–13]; and a cru-
cial element in such calculations is the nucleon axial form
factor, GA(Q2). The Q2 = 0 value of GA is the nucleon’s
isovector axial charge, gA = 1.2756(13) [14], which deter-
mines the rate of neutron-to-proton β-decay: n → p+e−+ν̄.
At the structural level, gA measures the difference between
the light-front number-densities of quarks with helicity par-
allel and antiparallel to that of the nucleon [15].

Regarding GP (Q2), calculations show that the pion pole
dominance Ansatz:

GP � 4m2
NGA

Q2 + m2
π

, (2)
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where mπ is the pion mass, is an excellent approximation
[16–19]. Hence, one may focus on the axial form factor,
GA(Q2).

GA(Q2) has long attracted interest. It was extracted from
νp and ν-deuteron, d, scattering experiments performed
over thirty years ago [20–23], with results that are consis-
tent with dipole behaviour characterised by a mass-scale
MA ≈ 1.1mN . However, these cross-sections only extend
to Q2 � 1 GeV2. A new analysis of the world’s data on νd
scattering, which reaches to Q2 � 3 GeV2, returns a sim-
ilar value [24], albeit with larger uncertainty. In contrast,
experiments using ν scattering on an array of heavier targets
(water, iron, mineral oil, Kevlar, and carbon) yield results
covering the range 1.1 � MA/mN � 1.60 [25–29]. Regard-
ing these extractions, issues relating to the reliability of the
model employed to describe the nuclear target and differ-
ences between the models used by the collaborations must
be considered.

Theoretically, there is no reason why GA(Q2) should
be well-approximated by a single dipole on the entire
domain of spacelike Q2; and deviations from this behaviour
may become important as experimental facilities begin to
probe weak interactions at larger momentum transfers. For
instance, precise knowledge of the larger Q2 behaviour of
GA(Q2) is important for experimental extraction of the pro-
ton’s strange-quark form factor [7].

Furthermore, it is conceivable that the study of threshold
pion electroproduction at large momentum transfers could
yield data on GA(Q2) that reaches out to Q2 � 10 GeV2

[30]; and, in fact, data have already been obtained on 2 �
Q2/GeV2 � 4 [31]. Were this promise to be fulfilled, then
one would be in a position to test the dipole Ansatz and,
importantly, deliver empirical information on the distribution
and flavour-separation of axial charge within the nucleon.

A computation of the large-Q2 behaviour of GA(Q2)

was completed using light-cone sum rules in Ref. [30]. It
closed with the suggestion that the results obtained could be
confronted with predictions from quantum chromodynam-
ics (QCD) obtained using lattice regularisation or continuum
Schwinger function methods (CSMs) [32,33]. At that time,
the large-Q2 domain was a challenge to both approaches.
Whilst this remains the case for lattice-QCD (lQCD), recent
advances in computer hardware and progress with formu-
lating the nucleon axial-current problem [18,19] mean that
a CSM calculation of GA(Q2) is now possible on a large
domain of spacelike Q2; and potentially, with continuing
algorithm improvement, the entire domain.

Section 2 sketches the nucleon Faddeev equation and
associated symmetry-preserving axial current that form the
basis for the analysis herein. This brief overview is suffi-
cient because extensive discussions of this and related mate-
rial are provided in numerous other sources, e.g., Refs.
[8,18,19,34–38]. A Euclidean formulation of the problem is

Fig. 1 Linear integral equation for the Poincaré-covariant matrix-
valued function Ψ , the Faddeev amplitude for a nucleon with total
momentum P = pq + pd = kq + kd constituted from three valence
quarks, two of which are always contained in a nonpointlike diquark
correlation. Ψ describes the relative momentum correlation between
the dressed-quarks and -diquarks. Legend. Shaded rectangle—Faddeev
kernel; single line – dressed-quark propagator; Γ – diquark correlation
amplitude; and double line – diquark propagator. Ground-state nucleons
(n - neutron, p - proton) contain both isoscalar-scalar diquarks, [ud] ∈
(n, p), and isovector-axialvector diquarks {dd} ∈ n, {ud} ∈ (n, p),
{uu} ∈ p

Fig. 2 Symmetry-preserving axial current for on-shell baryons
described by the Faddeev amplitudes produced by the equation depicted
in Fig. 1: single line, dressed-quark propagator; undulating line, the
axial or pseudoscalar current; Γ , diquark correlation amplitude; double
line, diquark propagator. For GA(Q2), seagull diagrams do not con-
tribute [19]

employed, for reasons described in Refs. [39–41]. Physical
results are obtained by evaluating amplitudes with external
nucleon momenta on-shell, following the procedure intro-
duced in Ref. [42] and since used in all kindred calculations
[32,33,43–45]. Our predictions for the nucleon axial form
factor are described in Sect. 3 as are their comparisons with
data and comparable computations. A detailed discussion of
the flavour-separated proton axial form factors is presented in
Sect. 4, including results for the associated light-front trans-
verse spatial density profiles. Section 5 provides a summary
and perspective.

2 Faddeev equation and axial current

Our calculation of GA(Q2) rests on a solution of the
Poincaré-covariant Faddeev equation depicted in Fig. 1,
which, when inserted into the diagrams drawn in Fig. 2,
delivers a result for the current in Eq. (1) that ensures,
inter alia, partial conservation of the axialvector current
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(PCAC) and the associated Goldberger-Treiman relation;
hence, realistic predictions for GA(Q2). Details are pre-
sented in Refs. [18,19], which provided results for GA(Q2)

on Q2 ∈ [0, 1.8] GeV2 and numerous comparisons with
existing data and modern calculations. Such calculations are
largely restricted to low-Q2. For subsequent use, we identify
the following separations of the current in Fig. 2.

1. Diagram (1), two distinct terms: 〈J 〉Sq – weak-boson
strikes dressed-quark with scalar diquark spectator; and
〈J 〉Aq – weak-boson strikes dressed-quark with axialvector
diquark spectator.

2. Diagram (2): 〈J 〉AAqq – weak-boson strikes axialvector
diquark with dressed-quark spectator.

3. Diagram (3): 〈J 〉{SA}
qq – weak-boson mediates transition

between scalar and axialvector diquarks, with dressed-
quark spectator.

4. Diagram (4), three terms: 〈J 〉SSex – weak-boson strikes
dressed-quark “in-flight” between one scalar diquark cor-
relation and another; 〈J 〉{SA}

ex – dressed-quark “in-flight”
between a scalar diquark correlation and an axialvector
correlation; and 〈J 〉AAex – “in-flight” between one axialvec-
tor correlation and another.

Supplying a little more background, then regarding Fig. 1
and accounting for Fermi-Dirac statistics, five types of
dynamical diquark correlations are possible in a J = 1/2
bound-state. However, only isoscalar-scalar, isovector-axial-
vector are quantitatively important in ground-state positive-
parity systems [8,46–48]. We use the following values for
their masses:

m[ud]0+ = 0.80 GeV , (3a)

m{uu}1+ = m{ud}1+ = m{dd}1+ = 0.89 GeV , (3b)

drawn from Ref. [49]. The dressed light-quarks are charac-
terised by a Euclidean constituent mass ME

q = 0.33 GeV.
All associated propagators and additional details concerning
the Faddeev kernel are presented in Ref. [19, Appendix A].
With these inputs, one obtains a good description of many
dynamical properties of baryons [4,43,50–53].

The solution of the Faddeev equation yields the nucleon
Faddeev amplitude, Ψ , and mass, mN = 1.18 GeV. This
value is intentionally large because Fig. 1 describes the
nucleon’s dressed-quark core. To produce the complete
nucleon, resonant contributions should be included in the
Faddeev kernel. Such “meson cloud” effects generate the
physical nucleon, whose mass is roughly 0.2 GeV lower
than that of the core [54,55]. (Similar effects are reported
in quark models [56,57].) Their impact on nucleon struc-
ture can be incorporated using dynamical coupled-channels
models [43,58], but that is beyond the scope of contem-

A

B

Fig. 3 Panel A. Low-x behaviour of GA(x = Q2/m2
N ). Solid purple

curve – CSM prediction. The associated shaded band shows the sensitiv-
ity to ±5% variation in diquark masses, Eq. (3). Comparisons provided
with: dipole fit to data – long-dashed gold curve within like-coloured
band [24]; values deduced from threshold pion electroproduction data
under three different assumptions [59] – open and filled triangles; results
from lattice QCD – green diamonds [16] and red squares [60]; and light-
cone sum rule results [30] obtained using two models of the nucleon
distribution amplitudes [61, Table 1]. – LCSR-1 (dot-dashed blue curve)
and LCSR-2 (dashed blue curve). The LCSR approach cannot deliver
a result below x � 1. Panel B. Large-x behaviour of GA(x). Curves
drawn according to the Panel A legend with the addition of threshold
pion electroproduction data from Ref. [31] – black diamonds

porary Faddeev equation analyses. Instead, we express all
form factors in terms of x = Q2/m2

N , a procedure that
has proved efficacious in developing solid comparisons with
experiment [4,43,50,51]. In addition, we report an uncer-
tainty obtained by independently varying the diquark masses
by ±5%, thereby changing mN by ±3%.

3 Nucleon axial form factor

Our prediction for GA(x) is displayed in Fig. 3. On 0 ≤ x ≤
10, the central result is reliably interpolated using

GA(x) = 1.248 + 0.039 x

1 + 1.417 x + 0.318 x2 + 0.071 x3 . (4)

First consider the low-x behaviour – Fig. 3A, wherein
the dipole fit to data from Ref. [24] is also drawn: mA =
1.15(8)mN . The dipole’s domain of validity is constrained
to x � 3; on this domain, it is a fair match for the CSM pre-
diction. This can be quantified by noting that were we to fit
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our result on x ≤ 3 using a dipole, then the procedure would
yield mA = 1.24(3)mN . Lattice-QCD values are available
on 0 ≤ x ≤ 1 [16,60] whereupon they agree with the CSM
result. For instance, measuring the Ref. [16] points against
our central result, the mean-χ2 is 0.79.

The large-x behaviour of GA(x) is highlighted in Fig. 3B.
Comparing our prediction with available data on this domain
[31], there is agreement within mutual uncertainties. It is
worth stressing that our results are parameter-free predic-
tions; especially because the framework employed is pre-
cisely the same as that used elsewhere in the explanation and
prediction of nucleon elastic form factors [4] and the elec-
troexcitation amplitudes of the Δ(1232) 3

2
+

and N (1440) 1
2
+

[62–64]. Hence, the agreement is meaningful, providing sup-
port for the picture of emergent hadron mass expressed in
our formulation of the baryon bound-state problem [65–67].
Future experiments using modern detectors, like SuperBig-
Bite (SBS) and CLAS12 at Jefferson Lab, can push knowl-
edge of elastic form factors and electroexcitation amplitudes
beyond Q2 = 5 GeV2, a domain on which CSM predictions
are already available [51]. Thus, the results in Fig. 3B pro-
vide strong motivation for complementing studies of ground-
and excited-state nucleon structure using the vector electro-
magnetic current by the determination ofGA(Q2) at large Q2

using near-threshold pion electroproduction from the proton,
which will expose nucleon structure as seen by a hard axial
current probe.

Fig. 3B also displays the only other existing GA calcula-
tion [30] that extends to x ≈ 10. It used light cone sum rules
(LCSRs); hence, cannot deliver form factor values below
x ≈ 1. As highlighted in Fig. 4A, the LCSR results forGA(x)
are markedly different from our prediction. The mismatch is
roughly a uniform factor of two, with the LCSR result lying
below.

It is also worth comparing our prediction for GA(x) with
an extrapolation of a typical dipole fit, which might be consid-
ered a reasonable tool for developing cross-section estimates
in the absence of a viable alternative. As noted above, when a
dipole is used to fit our results on x ≤ 3, one obtains a dipole
massmA = 1.24(3)mN . The comparison is shown in Fig. 4B.
On the fitting domain, the mean absolute relative difference
between Eq. (4) and dipole is 1.0(0.9)%. Plainly, however,
the dipole increasingly overestimates the actual result as x
increases, being 56(5)% too large at x = 10.

4 Flavour-separated axial form factor

It is a longstanding prediction of Faddeev equation stud-
ies that the nucleon contains both isoscalar-scalar and
isovector-axialvector diquarks correlations [8]. Experiment
[68, MARATHON] has confirmed the predicted ratio of their

A

B

Fig. 4 Panel A. LCSR results for GA(x) compared with the CSM
predictions, as measured by ratios of the associated curves in Fig. 3B.
The mean value of the ratio is 0.56(7). Panel B. CSM prediction for
GA(x) compared with a dipole fitted to the result on x ∈ [0, 3]. Whilst
the dipole is reasonable within the fitted domain, its reliability as an
approximation rapidly deteriorates as x is increased beyond x = 3. At
x = 10, the value of the drawn ratio is 0.64(2)

relative strengths [69]; showing, furthermore, that the proba-
bility that a scalar-diquark-only model of the proton might be
compatible with the data is ≈ 1/141000. Nevertheless, such
models are still in widespread use owing largely to their sim-
plicity.

The proton’s axial form factor can be written

GA(Q2) = Gu
A(Q2) − Gd

A(Q2) , (5)

where G f
A, f = u, d, are the contributions from each

valence-quark flavour to the total form factor. They may
be determined by focusing on the neutral current ( j = 3)
detailed in Ref. [19], making use of the expedient τ 3/2 →
Q = diag[Qu,Qd ], then tracking the flow of flavour in Ref.
[19, Eqs. (C4) - (C6)]. (For weak interactions, Qd/Qu = −1.
The scheme has also been exploited in producing flavour sep-
arations of electromagnetic form factors by choosing appro-
priate charge values [4,50,70,71].)

This analysis reveals the following diagram contributions
to the individual u, d axial form factors:

Gu
A = 〈J 〉Sq − 〈J 〉Aq + 〈J 〉AAqq + 1

2 〈J 〉{SA}
qq

+ 2〈J 〉{SA}
ex + 4

5 〈J 〉AAex , (6a)
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−Gd
A = 2〈J 〉Aq + 1

2 〈J 〉{SA}
qq

+ 〈J 〉SSex − 〈J 〉{SA}
ex + 1

5 〈J 〉AAex , (6b)

where we have used the nomenclature introduced at the
beginning of Sect. 2. Identified according to Eqs. (6), the cal-
culated Q2 = 0 contributions are listed in Table 1. (Eqs. (6)
correct those used in Ref. [18], wherein sign errors were
made in separating some terms. The principal fault was to
overlook Ref. [70, Eq. (C5)], thereby arriving at a separation
in the form (1/3)〈J 〉Aq and (2/3)〈J 〉Aq instead of (−)〈J 〉Aq
and 2〈J 〉Aq as written here. The sum is unity in both cases,
but the correction places significantly more axial charge with
the d quark while reducing that linked to the u quark.)

Importantly, Eqs. (6) express the fact that since a scalar
diquark cannot couple to an axialvector current, Diagram 1
in Fig. 2 only generates a u-quark contribution to the proton
GA(Q2), viz. 〈J 〉Sq . Hence, in a scalar-diquark-only proton, a
d-quark contribution can only arise from Fig. 2 - Diagram 4,
i.e., 〈J 〉SSex ; and |〈J 〉SSex /〈J 〉Sq | ≈ 0.06. It is also noteworthy
that many scalar-diquark-only models omit Diagram 4, in
which cases there is no d-quark contribution to GA(Q2). An
extension of these observations to the complete array of octet
baryons is described elsewhere [72, Sect. IV].

Working with the Q2 = 0 values of the flavour-separated
contributions to the proton isovector axial charge, one has

gA = guA − gdA =
∫ 1

0
dx [Δu(x) − Δd(x)] , (7)

where Δ f (x) is the f valence-quark’s contribution to the
proton’s light-front helicity, viz. the difference between the
light-front number-density of f -quarks with helicity parallel
to that of the proton and the kindred density with helicity
antiparallel. Using the solution of the Faddeev equation in
Fig. 1, one finds

guA/gA = 0.76 ± 0.01 , (8a)

gdA/gA = −0.24 ± 0.01 , (8b)

gdA/guA = −0.32 ± 0.02 . (8c)

It is here worth recalling a textbook result, viz. gdA/guA =
−1/4 in nonrelativistic quark models with uncorrelated wave
functions; hence, the highly-correlated proton wave func-
tion obtained as a solution of the Faddeev equation in Fig. 1
lodges a significantly larger fraction of the proton’s light-
front helicity with the valence d quark. The discussion fol-
lowing Eqs. (6) reveals that this outcome owes to the presence
of axialvector diquarks in the proton. Namely, the fact that
the current contribution arising from the {uu} correlation,
in which the probe strikes the valence d quark, is twice as
strong as that from the {ud} correlation, in which it strikes
the valence u quark. The relative negative sign means this
increases |gdA| at a cost to guA.

Regarding experiment, if one assumes SU(3)-flavour
symmetry in analyses of the axial charges of octet bary-
ons, then these charges are expressed in terms of two
low-energy constants, D, F ; and guA = 2F , gdA = F − D.
Using contemporary empirical information [73], one finds
D = 0.774(26), F = 0.503(27) and obtains the follow-
ing estimates: guA/gA = 0.79(4), gdA/gA = −0.21(3),
gdA/guA = −0.27(4), which match the predictions in
Eqs. (8) within mutual uncertainties.

Recent lQCD analyses also report results for the ratio
of flavour-separated charges: gdA/guA = −0.40(2) [74];
gdA/guA = −0.58(3) [75]. These values were computed
at a resolving scale ζ = 2 GeV. Whilst the difference in
Eq. (7) is renormalisation group invariant, the individual
flavour-separated terms are not; and the magnitude of gdA/guA
increases under QCD evolution [76–79]. However, the evo-
lution of gdA, guA is slow because it is modulated by the size
of SU(3)-flavour symmetry breaking [15]. Consequently,
even though our predictions are properly associated with the
hadronic scale, ζH ≈ 0.33 GeV [80,81], and evolution is
required for unambiguous comparison with the lQCD results,
there does appear to be tension between the lQCD results on
one hand and, on the other, our predictions and the empirical
inferences: the lQCD values seem too large in magnitude.

The ratio gdA/guA is also interesting for another reason.
In nonrelativistic quark models, the helicity and transversity
distributions are identical because boosts and rotations com-
mute with the Hamiltonian; hence, gdA/guA = gdT /guT , where

gd,u
T are the proton’s tensor charges. The ratio gdT /guT is renor-

malisation scale invariant. Analogous lQCD ratios in this
case are: gdT /guT = −0.25(2) [74,82]; gdT /guT = −0.29(3)

[75].
The tensor charge ratio has not been calculated in the

framework employed herein; but it was computed using a
quark+diquark Faddeev equation built upon the symmetry-
preserving regularisation of a contact interaction [83], with
the result gdT /guT = −0.32(7), and within a three-body
Faddeev equation approach [84], which yielded gdT /guT =
−0.24(1). A calculation of this ratio using our framework
would enable additional informative comparisons.

Given the preceding observations, it is worth calculating
and contrasting the u- and d-quark contributions to the pro-
ton axial form factor light-front transverse spatial density
profiles, defined thus:

ρ̂
f
A(|b̂|) =

∫
d2q⊥
(2π)2 eiq⊥·b̂G f

A(x) , (9)

with G f
A(x) interpreted in a frame defined by Q2 = m2

Nq
2⊥,

mNq⊥ = (q⊥1,q⊥2, 0, 0) = (Q1, Q2, 0, 0). Defined this
way, |b̂| and ρ̂

f
A are dimensionless.

In the case where axialvector diquark correlations are
omitted, one obtains the distinct flavour contributions to the
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Table 1 Diagram and flavour separation of the proton axial charge: guA = Gu
A(0), gdA = Gd

A(0); guA − gdA = 1.25(3). The listed uncertainties in
the tabulated results reflect the impact of ±5% variations in the diquark masses in Eq. (3), e.g. 0.886∓ ⇒ 0.88 ∓ 0.06

〈J 〉Sq 〈J 〉Aq 〈J 〉AAqq 〈J 〉{SA}
qq 〈J 〉SSex 〈J 〉{SA}

ex 〈J 〉AAex

guA 0.886∓ −0.080± 0.030± 0.080∓ 0 ≈ 0 0.03±1

−gdA 0 0.160± 0 0.080∓ 0.051± ≈ 0 0.01±0

A

B

Fig. 5 Individual quark flavour contributions to proton axial form
factor: here and hereafter, u quark - solid purple curve; and d quark -
dashed blue. PanelA. Isolating the scalar-diquark part of the proton Fad-
deev amplitude. Fig. 2 - Diagram 1 – Gu

A(x)/guA; and Fig. 2 - Diagram 4
– Gd

A(x)/gdA . In these cases, guA = 0.88(7), gdA = −0.046(7),
gdA/guA = −0.054(13). PanelB. Using complete proton Faddeev ampli-
tude, in which case all diagrams in Fig. 2 contribute and guA = 0.94(4),
gdA = −0.30(1)

proton axial form factor depicted in Fig. 5A. Evidently, the d-
quark piece, which is generated solely by Fig. 2 - Diagram 4,
is significantly harder than the u-quark part, generated by
Fig. 2 - Diagram 1. When regarding Fig. 5A, the normalisa-
tion of each distribution should be borne in mind. It was done
to expose the differing profiles. In reality, on the depicted
domain, the mean value of |Gd

A(x)/Gu
A(x)| is ≈ 0.1.

Reincorporating the axialvector part of the proton Fad-
deev amplitude, one obtains the flavour separated contribu-
tions in Fig. 5B. The d-quark piece is now only a little harder
than the u-quark part and the ratio of x = 0 magnitudes is
gdA/guA = −0.32(2), Eq. (8). On average, |Gd

A(x)/Gu
A(x)|

is ≈ 0.32. These changes are understood by noting that
Fig. 2 - Diagram 1 now also includes spectator axialvector
diquark terms, which provide contributions with similar Q2-

distributions for both u- and d-quarks; as do all other addi-
tional diagrams.

Working with the results depicted in Fig. 5A and Eq. (9),
one obtains the valence-quark spatial density profiles drawn
in Fig. 6. We have used dimensionless quantities, which can
be mapped into physical units using:

ρ
f
A(|b| = |b̂|/mN ) = m2

N ρ̂
f
A(|b̂|) ; (10)

hence, |b̂| = 1 corresponds to |b| ≈ 0.2 fm and ρ̂
f

1 = 0.1 ⇒
ρ

f
1 ≈ 2.3/fm2.

The top row of Fig. 6 depicts one-dimensional density
profiles for d and u quarks in a scalar-diquark-only proton.
In this case, the d quark profile is more pointlike than that
of the u quark – r⊥

Ad = 0.24 fm, r⊥
Au = 0.48 fm, so the

d/u ratio of radii is ≈ 0.5; and ρd
A(|b̂|) exhibits a zero at

|b̂| = 3.2 ⇒ |b| = 0.68 fm. Removing the 1/g f
A normal-

isation from these profiles, their respective b = 0 values
are ρ̂d

A(0) = −0.009, ρu
A(0) = 0.097. The second row of

Fig. 6 provides two-dimensional renderings of the flavour-
separated transverse density profiles in the first row. They
highlight the diffuseness of the u quark profile relative to
that of the d quark, i.e., its greater extent in the light-front
transverse spatial plane.

Turning now to Fig. 7, the top row depicts one-dimensional
density profiles for d and u quarks obtained when both scalar
and axialvector diquarks are retained in the strength deter-
mined by the Faddeev equation in Fig. 1. In this realistic case,
the d quark profile is only somewhat more pointlike than that
of the u quark – r⊥

Ad = 0.43 fm, r⊥
Au = 0.49 fm, so the d/u

ratio of radii is ≈ 0.9; and neither profile exhibits a zero on
|b| � 2 fm. Removing the 1/g f

A normalisation, the respec-
tive b = 0 values of these profiles are ρ̂d

A(0) = −0.038,
ρu
A(0) = 0.12. The second row of Fig. 7 displays two-

dimensional representations of the flavour-separated trans-
verse density profiles in the first row. They highlight that,
relative to the d-quark profile, the intensity peak is narrower
for the u quark.

5 Summary and outlook

Beginning with a Poincaré-covariant quark+diquark
Faddeev equation and symmetry-preserving weak interaction
current [Sect. 2], we delivered parameter-free predictions for
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A B

C D

Fig. 6 Transverse density profiles, Eq. (9), calculated from the flavour
separated proton axial form factors in Fig. 5A, i.e., for a scalar-diquark-
only proton. Panel A – ρ̂

f
A (|b̂|)/g f

A ; Panel B – |b̂|ρ̂ f
A (|b̂|)/g f

A ; Panel

C – two-dimensional plot of ρ̂d
A(|b̂|)/gdA; Panel D – similar plot of

ρ̂u
A(|b̂|)/guA. Removing the 1/g f

A normalisation, the b = 0 values

are ρ̂d
A(0) = −0.009, ρu

A(0) = 0.097. N.B.
∫
d2b̂ ρ̂

f
A (|b̂|)/g f

A = 1,
f = u, d

the nucleon axialvector form factor, GA(Q2), on the domain
0 ≤ x = Q2/m2

N ≤ 10, where mN is the nucleon mass.
Our result agrees with all currently available data [Fig. 3],
including that set obtained using large momentum transfer
threshold pion electroproduction [31], which currently cov-
ers the range 2 � x � 4. This experimental technique could
potentially be used to reach higher Q2 values.

One other calculation of GA(Q2) at large-Q2 is available
[30], with results on 1 � Q2/m2

N � 10. Having used light-
cone sum rules (LCSR), low-Q2 was inaccessible. Compared
with our predictions, the LCSR results are pointwise different
and, on average, approximately 40% smaller [Fig. 4A].

Regarding the oft-used dipole Ansatz, we showed that
it could be used to provide a reasonable representation of
GA(x) on x ∈ [0, 3]. Outside the fitted domain, however, the
quality of approximation deteriorates quickly, with the dipole
overestimating the true result by 56% at x = 10 [Fig. 4B].

We discussed the separation of the proton GA into sepa-
rate contributions from valence u and d quarks, relating the
results to the zeroth moments of the associated light-front

helicity distributions; and exploiting the Q2 coverage of our
predictions, we also calculated the flavour-separated light-
front transverse spatial density profiles [Sect. 4].

Our value of gdA/guA = −0.32(2) is consistent with avail-
able experimental data, but significantly lower in magni-
tude than recent results from lattice-regularised QCD. On the
other hand, comparing magnitudes, it is markedly larger than
the value typical of nonrelativistic constituent quark mod-
els with uncorrelated wave functions (−1/4). The enhance-
ment owes to the presence of axialvector diquark correlations
in our Poincaré-covariant nucleon wave function. Impor-
tantly, in the absence of axialvector diquarks, gdA/guA =
−0.054(13).

Our calculated light-front transverse density profiles
revealed that, omitting axialvector diquarks, the magnitude
of the d quark contribution to GA is just 10% of that from the
u quark and the d quark is also much more localised [Fig. 6].
Working instead with a realistic axialvector diquark fraction,
the d and u quark transverse profiles are quite similar, after
accounting for their different normalisations [Fig. 7].
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A B

C D

Fig. 7 Transverse density profiles, Eq. (9), calculated from the flavour
separated proton axial form factors in Fig. 5B, i.e., for a realistic proton
Faddeev amplitude. Panel A – ρ̂

f
A (|b̂|)/g f

A ; Panel B – |b̂|ρ̂ f
A (|b̂|)/g f

A ;

Panel C – two-dimensional plot of ρ̂d
A(|b̂|)/gdA; Panel D – similar

plot of ρ̂u
A(|b̂|)/guA. Removing the 1/g f

A normalisation, the b = 0
values of these profiles are ρ̂d

A(0) = −0.038, ρu
A(0) = 0.12. N.B.∫

d2b̂ ρ̂
f
A (|b̂|)/g f

A = 1, f = u, d

Owing to the importance of developing a theoretical
understanding of nucleon spin structure, it would be worth
extending the work on gdA, guA described herein to the anal-
ogous problem of proton tensor charges, whose precision
measurement is a high-profile goal [85]. Equally and vice
versa, a three-quark Faddeev equation treatment of the pro-
ton’s flavour-separated axial charges would be valuable, fol-
lowing Ref. [84] and possibly improving upon that study
by using a more sophisticated bound-state kernel of the type
discussed elsewhere [86,87].

More immediately, one can readily adapt the Faddeev
equation and current used in the present study to weak
interaction induced transitions between the nucleon (N ) and
its lowest lying excitations, such as the Δ-baryon and the
N∗(1535). Many calculations of the N → Δ transition
exist, using a variety of frameworks. Moreover, this process
is important for a reliable understanding of neutrino scatter-
ing. Hence, completing a fully Poincaré-covariant analysis
of the weak N → Δ transition, on a domain that stretches
from low-to-large Q2, is a high priority.
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