Skip to main content
Log in

Charge-asymmetric correlations in elastic lepton- and antilepton-proton scattering from real photon emission

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Observation of charge asymmetry by comparing electron and positron, or muon and anti-muon, scattering on a hadronic target presently serves as an experimental tool to study two-photon exchange effects. In addition to two-photon exchange, real photon emission also contributes to the charge asymmetry. We present a theoretical formalism, explicit expressions, and a numerical analysis of hard photon emission for the charge asymmetry in lepton- and antilepton-proton scattering. Different kinematic conditions are considered, namely, either fixed transferred momentum squared or a fixed lepton scattering angle. The infrared divergence from real photon emission is treated by the Bardin–Shumeiko technique and canceled with the soft part of the two-photon exchange contribution extracted and calculated using Tsai approach. All final expressions are obtained beyond the ultrarelativistic approximation with respect to the lepton mass that allows to evaluate numerically of the considered effects not only for ultrarelativistic leptons (JLab) and but for moderately relativistic (MUSE) kinematics, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The manuscript has associated data in a data repository [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. L. Andivahis et al., Phys. Rev. D 50, 5491 (1994)

    Article  ADS  Google Scholar 

  2. I.A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005)

  3. M.K. Jones et al., Jefferson Lab Hall A. Phys. Rev. Lett. 84, 1398 (2000)

    Article  ADS  Google Scholar 

  4. O. Gayou et al., Jefferson Lab Hall A. Phys. Rev. Lett. 88, 092301 (2002)

    Article  ADS  Google Scholar 

  5. L.C. Maximon, J.A. Tjon, Phys. Rev. C 62, 054320 (2000)

    Article  ADS  Google Scholar 

  6. A. Afanasev, I. Akushevich, N. Merenkov, Phys. Rev. D 64, 113009 (2001)

    Article  ADS  Google Scholar 

  7. A.V. Afanasev, I. Akushevich, N.P. Merenkov, Phys. Rev. D 65, 013006 (2002)

    Article  ADS  Google Scholar 

  8. A.V. Afanasev, I. Akushevich, A. Ilyichev, N.P. Merenkov, Phys. Lett. B 514, 269–278 (2001)

    Article  ADS  Google Scholar 

  9. A. Afanasev, P.G. Blunden, D. Hasell, B.A. Raue, Prog. Part. Nucl. Phys. 95, 245–278 (2017)

    Article  ADS  Google Scholar 

  10. I. Akushevich, H. Gao, A. Ilyichev, M. Meziane, Eur. Phys. J. A 51, 1 (2015)

    Article  ADS  Google Scholar 

  11. P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633 (2008)

    Article  ADS  Google Scholar 

  12. I. Sick, Phys. Lett. B 576, 62 (2003)

    Article  ADS  Google Scholar 

  13. R. Pohl et al., Nature 466, 213 (2010)

    Article  ADS  Google Scholar 

  14. W. Xiong et al., Nature 575, 147 (2019)

    Article  ADS  Google Scholar 

  15. R. Gilman et al. (MUSE). arXiv:1709.09753

  16. A. Gasparian et al. (PRad). arXiv:2009.10510

  17. P. Talukdar, V.C. Shastry, U. Raha, F. Myhrer, Phys. Rev. D 104(5), 053001 (2021)

    Article  ADS  Google Scholar 

  18. L.W. Mo, Y.S. Tsai, Rev. Mod. Phys. 41, 205 (1969)

    Article  ADS  Google Scholar 

  19. A.V. Gramolin et al., J. Phys. G 41(11), 115001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. D.Y. Bardin, N.M. Shumeiko, Nucl. Phys. B 127, 242 (1977)

    Article  ADS  Google Scholar 

  21. A. Afanasev, A. Ilyichev, Phys. Rev. D 105(1), L011301 (2022)

    Article  ADS  Google Scholar 

  22. A. Afanasev, A. Ilyichev, Eur. Phys. J. A 57(9), 280 (2021)

    Article  ADS  Google Scholar 

  23. Y.S. Tsai, Phys. Rev. 122, 1898–1907 (1961)

    Article  ADS  Google Scholar 

  24. D.R. Yennie, S.C. Frautschi, H. Suura, Ann. Phys. 13, 379–452 (1961)

    Article  ADS  Google Scholar 

  25. N.M. Shumeiko, Sov. J. Nucl. Phys. 29, 807 (1979)

    Google Scholar 

  26. G. Passarino, Nucl. Phys. B 619, 313–358 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  27. J.J. Kelly, Phys. Rev. C 70, 068202 (2004)

    Article  ADS  Google Scholar 

  28. B.M. Preedom, R. Tegen, Phys. Rev. C 36, 2466–2472 (1987)

    Article  ADS  Google Scholar 

  29. D. Adikaram et al., CLAS. Phys. Rev. Lett. 114, 062003 (2015)

    Article  ADS  Google Scholar 

  30. A.V. Afanasev, I. Akushevich, A. Ilyichev, B. Niczyporuk, Czech. J. Phys. 53, B449–B454 (2003). arXiv:hep-ph/0308106

    Article  Google Scholar 

  31. I. Akushevich, O.F. Filoti, A.N. Ilyichev, N. Shumeiko, Comput. Phys. Commun. 183, 1448–1467 (2012)

    Article  ADS  Google Scholar 

  32. J. Kahane, Phys. Rev. 135, B975–B1004 (1964)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work of AA was supported by National Science Foundation under grant No. PHY-1812343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ilyichev.

Additional information

Communicated by R. Alkofer.

Appendices

Appendix A: Calculation of the three-point loop integrals

Here we present the details of calculation of the three-point loop integrals defined by Eq. (16).

Using Feynman parametrization we find that

$$\begin{aligned} K_{IR}(a,b)=-\frac{4ab}{i\pi ^2}\int \limits _0^1dy \int \limits _0^1dx \int \frac{x(2\pi \mu )^{4-n}d^nl}{(l^2-x^2c_y^2(a,b))^3}\;\;\nonumber \\ \end{aligned}$$
(A.1)

with \(c_y(a,b)=a y+b(1-y)\).

The integration over l in n-dimensional space gives:

$$\begin{aligned} K_{IR}(a,b)= & {} 2ab\frac{\Gamma \left( 3-n/2\right) }{(2\sqrt{\pi }\mu )^{n-4}} \int \limits _0^1dy \int \limits _0^1dx x^{n-5}c^{n-6}_y(a,b). \nonumber \\ \end{aligned}$$
(A.2)

After integration over x, and the expansion of the obtained expressions into the Laurent series around \(n=4\) result in:

$$\begin{aligned} K_{IR}(a,b)= & {} ab \int \limits _0^1 \frac{dy}{c^2_y(a,b)}\Biggl [ \displaystyle 2P_{IR} + \log \frac{c^2_y}{\mu ^2} \Biggr ] \nonumber \\= & {} 2ab\int \limits _0^1 dy{{\mathcal {K}}}_y(a,b), \end{aligned}$$
(A.3)

where the term representing the infrared divergence in the dimensional regularization reads

$$\begin{aligned} P_{IR}=\frac{1}{n-4}+\frac{1}{2}\gamma _E+\log \frac{1}{2\sqrt{\pi }}. \end{aligned}$$
(A.4)

After substitution into (A.3) photon mass regularization \(P_{IR}=\log \mu /\lambda \) we immediately find that our definition of \(K_{IR}(a,b)\) is equal to \(K(p_i,p_j)\) defined by Eq. (I.5) of [23].

Taking into account that \(c^2_y(k_1,-p_1)=c^2_y(k_2,-p_2)=\zeta _d(y)\) and \(c^2_y(k_1,p_2)=c^2_y(k_2,p_1)=\zeta _x(y)\), where

$$\begin{aligned} \zeta _d(y)= & {} y (m^2 y-S (1-y))+M^2 (y-1)^2, \nonumber \\ \zeta _x(y)= & {} y (m^2 y+X (1-y))+M^2 (y-1)^2 \end{aligned}$$
(A.5)

we will consider only two integrals, namely \(K_d=K_{IR}(k_1,-p_1)=K_{IR}(k_2,-p_2)\) and \(K_x=K_{IR}(k_1,p_2)=K_{IR}(k_2,p_1)\), that defined in the following way:

$$\begin{aligned} K_d= & {} -\frac{S}{2} \int \limits _0^1 \frac{dy}{\zeta _d(y)}\Biggl [ \displaystyle 2P_{IR} + \log \frac{\zeta _d(y)}{\mu ^2} \Biggr ] =\int \limits _0^1 dy{{\mathcal {K}}}_d(y), \nonumber \\ K_x= & {} \frac{X}{2} \int \limits _0^1 \frac{dy}{\zeta _x(y)}\Biggl [ \displaystyle 2P_{IR} + \log \frac{\zeta _x(y)}{\mu ^2} \Biggr ] =\int \limits _0^1 dy{{\mathcal {K}}}_x(y). \nonumber \\ \end{aligned}$$
(A.6)

The expression \(\zeta _{d,x}(y)\) can be presented in the following way:

$$\begin{aligned} \zeta _{d,x}(y)=\frac{M^2}{y_1^{d,x}y_2^{d,x}}(y-y_1^{d,x})(y-y_2^{d,x}), \end{aligned}$$
(A.7)

where

$$\begin{aligned} y_1^d=\frac{2M^2}{2M^2+S+{\sqrt{\lambda _{S}}}},\; y_2^d=\frac{2M^2}{2M^2+S-{\sqrt{\lambda _{S}}}},\;\;\;\; \nonumber \\ y_1^x=\frac{2M^2}{2M^2-X+{\sqrt{\lambda _{X}}}},\; y_2^x=\frac{2M^2}{2M^2-X-{\sqrt{\lambda _{X}}}}.\;\;\;\; \end{aligned}$$
(A.8)

It should be noted that for all \(S>2mM\) the quantities \(y_{1,2}^d\) belong to the region of the integration: \(1>y_2^d>y_1^d>0\). As a result, according to Eq. (A.7) the function \(\zeta _{d}(y)\) is positive for the two segments of the integration, namely \(0<y<y_1^d\) and \(y_2^d<y<1\), and negative between them. Moreover at the points \(y=y_{1,2}^d\) the integral over y in \(K_d\) defined by Eq. (A.6) diverges.

To perform the integration over y the method suggested by Kahane [32] is used. For this purpose the integration region is broken up into five segments as it is shown in Fig. 7. The contours \(C_2\) and \(C_4\) are chosen such that \(\zeta _{d}(y)\) has negative imaginary parts.

The integration for the regions \(C_1\), \(C_3\) and \(C_5\) can be expressed via Spence’s dilogarithm

$$\begin{aligned} \mathrm{Li }_2(x)=-\int \limits _0^x\frac{\log |1-y|}{y}dy \end{aligned}$$
(A.9)

in a following way

$$\begin{aligned}&K_{d}^{C_1} = \lim _{\delta _1\rightarrow 0}\int \limits _0^{y_1^d-\delta _1} dy {{\mathcal {K}}}_d(y) =\frac{S}{4{\sqrt{\lambda _{S}}}}\nonumber \\&\quad \times \left[ 2\biggl (2P_{IR}+\log \frac{{\sqrt{\lambda _{S}}}}{\mu ^2}\biggr ) \log \frac{\delta _1(S+2M^2+{\sqrt{\lambda _{S}}})^2}{4M^2{\sqrt{\lambda _{S}}}}\right. \nonumber \\&\quad + \log ^2\delta _1 +2 \log \frac{S+2M^2+{\sqrt{\lambda _{S}}}}{2{\sqrt{\lambda _{S}}}} \log \frac{{\sqrt{\lambda _{S}}}(S+2M^2+{\sqrt{\lambda _{S}}})}{2(S+M^2+m^2)^2}\nonumber \\&\quad \left. -\log ^2\frac{M^2}{{\sqrt{\lambda _{S}}}}-4 \mathrm{Li}_2\frac{S+2M^2+{\sqrt{\lambda _{S}}}}{2{\sqrt{\lambda _{S}}}} +\frac{2}{3}\pi ^2 \right] , \nonumber \\&K_{d}^{C_3} = \lim _{\delta _{1,2}\rightarrow 0}\int \limits _{y_1^d+\delta _1}^{y_2^d-\delta _2} dy{{\mathcal {K}}}_d(y) =-\frac{S}{4{\sqrt{\lambda _{S}}}}\nonumber \\&\quad \times \left[ 2 \biggl (2P_{IR}+\log \frac{{\sqrt{\lambda _{S}}}}{\mu ^2}\biggr ) \log \frac{\delta _1\delta _2(S+M^2+m^2)^2}{\lambda _S}\right. \nonumber \\&\quad + \log ^2\delta _1 + \log ^2\delta _2 -2\log ^2 \frac{S+M^2+m^2}{{\sqrt{\lambda _{S}}}}\nonumber \\&\quad \left. +\frac{2}{3}\pi ^2 +2i\pi \log \frac{\delta _1\delta _2(S+M^2+m^2)^2}{\lambda _S} \right] , \nonumber \\ K_{d}^{C_5}&= \lim _{\delta _2\rightarrow 0}\int \limits ^1_{y_2^d+\delta _2} dy{{\mathcal {K}}}_d(y) =\frac{S}{4{\sqrt{\lambda _{S}}}}\nonumber \\&\quad \times \left[ 2\biggl (2P_{IR}+\log \frac{{\sqrt{\lambda _{S}}}}{\mu ^2}\biggr ) \log \frac{\delta _2(S+2m^2+{\sqrt{\lambda _{S}}})^2}{4m^2{\sqrt{\lambda _{S}}}} + \log ^2\delta _2 \right. \nonumber \\&\quad +2 \log \frac{S+2m^2+{\sqrt{\lambda _{S}}}}{2{\sqrt{\lambda _{S}}}} \log \frac{2m^4}{{\sqrt{\lambda _{S}}}(S+2m^2+{\sqrt{\lambda _{S}}})}\nonumber \\&\quad \left. -\log ^2\frac{m^2}{{\sqrt{\lambda _{S}}}} +4 \mathrm{Li}_2\frac{{\sqrt{\lambda _{S}}}-S-2m^2}{2{\sqrt{\lambda _{S}}}} \right] . \end{aligned}$$
(A.10)

The integration along \(C_2\) and \(C_4\) is done by replacing \(y\rightarrow r_1=y_1^d-\delta _1 \exp (-i\theta )\) and \(y\rightarrow r_2=y_2^d-\delta _1 \exp (i\theta )\) respectively:

$$\begin{aligned} K_{d}^{C_2}&= \lim _{\delta _1\rightarrow 0}\int \limits _0^{\pi } d\theta \frac{dr_1}{d\theta }{{\mathcal {K}}}_d(r_1)\nonumber \\&= -\frac{S}{4{\sqrt{\lambda _{S}}}} \left[ \pi ^2+2i\pi \biggl (2P_{IR}+\log \frac{\delta _1{\sqrt{\lambda _{S}}}}{\mu ^2}\biggr ) \Biggr ],\right. \nonumber \\ K_{d}^{C_4}&= \lim _{\delta _2\rightarrow 0}\int \limits _0^{\pi } d\theta \frac{dr_2}{d\theta }{{\mathcal {K}}}_d(r_2)\nonumber \\&=-\frac{S}{4{\sqrt{\lambda _{S}}}} \Biggl [\pi ^2+2i\pi \biggl (2P_{IR}+\log \frac{\delta _2{\sqrt{\lambda _{S}}}}{\mu ^2}\biggr ) \Biggr ].\nonumber \\ \end{aligned}$$
(A.11)
Fig. 7
figure 7

Path integration over y for \(K_d\)

Summing up the integral over all five segments we obtained that:

$$\begin{aligned} K_{d}&=\sum _{i=1}^5K_{d}^{C_i} =\frac{S}{4{\sqrt{\lambda _{S}}}}\Biggl [\biggl (4P_{IR}+4\log \frac{m}{\mu }\nonumber \\&\quad -\log \frac{S+{\sqrt{\lambda _{S}}}}{S-{\sqrt{\lambda _{S}}}}\biggr )\log \frac{S+{\sqrt{\lambda _{S}}}}{S-{\sqrt{\lambda _{S}}}} +4\mathrm{Li}_2\frac{{\sqrt{\lambda _{S}}}-S-2m^2}{2{\sqrt{\lambda _{S}}}} \nonumber \\&\quad -4 \mathrm{Li}_2\frac{S+2M^2+{\sqrt{\lambda _{S}}}}{2{\sqrt{\lambda _{S}}}}\nonumber \\&\quad +2\log \frac{S-{\sqrt{\lambda _{S}}}}{2M^2}\log \frac{(S-{\sqrt{\lambda _{S}}})(S+2M^2-{\sqrt{\lambda _{S}}})^2}{8M^2\lambda _S}\nonumber \\&\quad -2\pi ^2 -4i\pi \biggl (2P_{IR}\nonumber \\&\quad +\log \frac{\delta _1\delta _2(S+m^2+M^2)}{\mu ^2}\biggr ) \Biggr ]. \end{aligned}$$
(A.12)

As opposed to \(\zeta _{d}(y)\) in the region \(0<y<1\) the other function \(\zeta _{x}(y)\) is always positive since \(y_2^x>y_1^x>1\) for \(2mM<X<M^2+m^2\) and \(y_1^x>1>0>y_2^x\) for \(X>M^2+m^2\). For both these situations we have:

$$\begin{aligned} K_{x}&= \frac{X}{4{\sqrt{\lambda _{X}}}}\Biggl [ \biggl (4P_{IR}+4\log \frac{m}{\mu }\nonumber \\&\quad +\log \frac{X+{\sqrt{\lambda _{X}}}}{X-{\sqrt{\lambda _{X}}}}\biggr )\log \frac{X+{\sqrt{\lambda _{X}}}}{X-{\sqrt{\lambda _{X}}}}\nonumber \\&\quad +4 \mathrm{Li}_2\frac{2M^2+{\sqrt{\lambda _{X}}}-X}{2{\sqrt{\lambda _{X}}}} \nonumber \\&\quad -4\mathrm{Li}_2\frac{X+{\sqrt{\lambda _{X}}}-2m^2}{2{\sqrt{\lambda _{X}}}}\nonumber \\&\quad -2\log \frac{X+{\sqrt{\lambda _{X}}}}{2M^2}\log \frac{(X+{\sqrt{\lambda _{X}}})(X-2M^2+{\sqrt{\lambda _{X}}})^2}{8M^2\lambda _X} \Biggr ]. \nonumber \\ \end{aligned}$$
(A.13)

Appendix B: Explicit expression for \(\theta _{ijk}^l(Q^2,\tau )\)

The quantities \(\theta _{ijk}^l(Q^2,\tau )\) read:

$$\begin{aligned} \theta ^1_{111}= & {} 4(S^2+X^2-2 Q^2 (m^2+M^2))F_{IR}, \\ \theta ^2_{111}= & {} 4S_p((Q^2-2M^2)F+2m^2F_d-(Q^2+\tau S )F_{1+} )\\&+\tau Q^2(4(m^2+M^2)-Q^2)(\tau F_d+F_{1+}) \\&+2((1+\tau ) (5 Q^2-6 S)+2(4-\tau )m^2-2\tau M^2)F_{IR}\\&+2(2 S^2+(Q^2+\tau S+4m^2)Q^2)F_{1+} +\frac{4}{1+\tau }\\&\times (S_p((Q^2+2M^2)F-2m^2F_d)+(2m^2Q^2-S X)F_{1+}), \\ \theta ^3_{111}= & {} 2 \tau (2(S_p+X)F+(\tau ^2 (M^2+m^2)\\&-(1+\tau )(\tau Q^2+4m^2))F_d +(\tau (4S-Q^2+m^2+M^2) \\&+2S+3Q^2)F_{1+})+2(4+8\tau +5\tau ^2)F_{IR} \\&+4((Q^2+2 m^2)F_{1+}+(4M^2-Q^2)F_{z_1}-(S+Q^2)F) \\&+\frac{4}{1+\tau } (XF-Q^2F_{z_1}), \\ \theta ^4_{111}= & {} -\tau (4(1+\tau )F+4F_{z_1}+(2+4\tau +3\tau ^2)(\tau F_d+F_{1+})), \\ \theta ^1_{112}= & {} 4Q^2(Q^2-2 m^2)F_{IR}, \\ \theta ^2_{112}= & {} 2Q^2\tau \biggl [ \frac{S_pF-m^2F_{1+}}{1+\tau }\\&-\tau (Q^2-2 m^2)F_d-(Q^2-m^2 )F_{1+} \biggr ] +\tau (5 Q^2-8 m^2)F_{IR}, \\ \theta ^3_{112}= & {} 2\tau (S+S_p)F+2\tau ^2F_{IR}+\frac{\tau }{2}\biggl [\tau ^2 (8 m^2-5 Q^2)F_d\\&-(5\tau Q^2+4(1-\tau )m^2)F_{1+}\biggr ] -8Q^2F_{z_1} \\&-\frac{2\tau }{1+\tau }((S_p+X)F-Q^2F_{z_1}-m^2F_{1+}), \\ \theta ^4_{112}= & {} -6\tau F_{z_1}-\tau ^3(\tau F_d+F_{1+}), \\ \theta ^1_{121}= & {} 4Q^2 (Q^2-2 m^2)F_{IR}, \\ \theta ^2_{121}= & {} \tau Q^2\biggl [2\tau (2m^2-Q^2)F_d+3F_{IR}+2(3m^2-Q^2)F_{1+}\\&+\frac{2\tau }{1+\tau }(m^2F_{1+}-S_pF)\biggr ], \\ \theta ^3_{121}= & {} 2(1+\tau )Q^2F+\tau ^2(F_{IR}\\&-\frac{3}{2}Q^2(\tau F_d+F_{1+}))-\frac{2Q^2}{1+\tau }(F+2F_{z_1}), \end{aligned}$$
$$\begin{aligned} \theta ^4_{121}= & {} -\frac{\tau ^3}{2}(\tau F_d+F_{1+}), \\ \theta ^1_{122}= & {} \frac{2Q^2}{M^2} (SX+M^2(Q^2-4m^2))F_{IR}, \\ \theta ^2_{122}= & {} \frac{1}{4M^2}\Biggl [ Q^2\biggl (8Q^2S_pF+\tau ^2(Q^2(Q^2-4M^2)\\&+16m^2M^2)F_d +(16m^2(Q^2+\tau M^2) \\&+2Q^2((3\tau -2)S-2\tau M^2)+(6+\tau )Q^4-8 \tau S^2)F_{1+}\\&-\frac{4\tau }{1+\tau }(S_p((Q^2+2M^2)F-2m^2F_d) \\&+(2m^2Q^2-SX)F_{1+})\biggr ) +2(8m^2(Q^2-\tau M^2)+2Q^2(2\tau M^2\\&-(3+4\tau )S)+(5+3\tau )Q^4+2\tau S^2)F_{IR} \Biggr ], \\ \theta ^3_{122}= & {} \frac{1}{8M^2}\Biggl [ 4Q^2((6\tau S+(1+\tau )(2M^2-5Q^2)-2X)F\\&+4M^2F_{z_1}) +(4(Q^2+S)(2Q^2-S) +16m^2(M^2+3Q^2) \\&+2\tau (8m^2(Q^2-M^2)+9Q^4+2S^2) +\tau ^2(Q^4-8M^2Q^2\\&+22Q^2S-8S^2))F_{1+} +\tau (\tau Q^2(\tau (Q^2-8M^2)-4Q^2)\\&+16m^2(\tau ^2M^2-(1+\tau )Q^2))F_d +2((1+\tau )(16m^2\\&+\tau (11Q^2-6S)) +2\tau (4Q^2+\tau M^2)+6Q^2) F_{IR} +\frac{4}{1+\tau }\\&\times ((SX-4M^2m^2)F_{1+}-Q^2(S_p+2M^2)F-4M^2Q^2F_{z_1})\Biggr ], \\ \theta ^4_{122}= & {} \frac{1}{4M^2}\biggl [4(\tau ^2(S-2Q^2)-\tau (Q^2+S)+Q^2)F+4Q^2F_{z_1}\\&+\tau (8 m^2+(1+2\tau )Q^2)(F_{1+}-\tau (1+\tau )F_d) \\&+\tau ^2 (\tau (2S-M^2)+2(1+\tau )X)F_{1+}\\&-\tau ^3(Q^2+\tau M^2)F_d+4\tau (\tau +1)^2F_{IR}\biggr ], \\ \theta ^5_{122}= & {} -\frac{1+\tau }{4M^2} \biggl [\tau ^2 (2F+(1+\tau )(\tau F_d+F_{1+}))-4F_{z_1}\biggr ], \\ \theta ^3_{211}= & {} 2(Q^2+(\tau -1)S)F-2Q^2F_{z_1}+ \tau ^2F_{IR}\\&+\frac{2}{1+\tau }(XF-Q^2F_{z_1}), \\ \theta ^4_{211}= & {} -\tau (2 F_{z_1}+\frac{\tau ^2}{2} (F_d \tau +F_{1+})), \\ \theta ^2_{212}= & {} \frac{\tau S_p}{4 M^2}\biggl [ (2Q^2(Q^2+4 m^2)+(\tau -1)(\lambda _S+\lambda _X))F_d-Q^2S_pF_{1+}\\&-\frac{1}{1+\tau }(Q^2 S_pF_{1+}-2Q^2(Q^2+4 M^2)F -(\lambda _S+\lambda _X)F_d) \biggr ], \\ \theta ^3_{212}= & {} \frac{1}{4M^2}\biggl [ 2(4\tau X(Q^2+M^2)+Q^2(\tau Q^2-4S_p))F\\&+4Q^4F_{z_1}+(\tau ^3((S_p+8m^2)M^2-3Q^4+8Q^2S-6S^2)\\&+2\tau (Q^2+4 m^2)(2\tau X-Q^2)+\tau S_p((1-\tau )M^2-Q^2))F_d\\&+(8m^2Q^2+2\tau \lambda _S +\tau Q^2(6S-4Q^2-M^2) \\&-\tau ^2(Q^2 (M^2-Q^2)+4 X^2))F_{1+} \\&-\frac{\tau }{1+\tau }(Q^2 (M^2(8F_{z_1}-F_d) +2Q^2(F+2F_{z_1})) \\&+(2M^2S-Q^2S_p)(4F+F_d) +(\lambda _S+\lambda _X-M^2 Q^2)F_{1+} ) \biggr ], \\ \theta ^4_{212}= & {} \frac{1}{4M^2} \biggl [2(\tau -1)(\tau S_p-2(\tau +2)Q^2)F+8(Q^2-\tau M^2)F_{z_1} \end{aligned}$$
$$\begin{aligned}&+\tau ^2(4(1+\tau )(\tau S-2m^2) -\tau ^2M^2 \nonumber \\&-(1+5\tau +3\tau ^2 )Q^2)F_d+\tau (\tau (2(1+2\tau )S-\tau M^2)\nonumber \\&-(3+5\tau +3\tau ^2)Q^2+8 m^2)F_{1+} \biggr ], \nonumber \\ \theta ^5_{212}= & {} \frac{1+\tau }{4 M^2} (4F_{z_1}-\tau ^2(2 F+(1+\tau ) (\tau F_d+F_{1+}))), \nonumber \\ \theta ^2_{221}= & {} \frac{\tau S_p}{4M^2}\biggl [ Q^2S_pF_{1+}-(2Q^2(Q^2+4 m^2) {\!}+{\!}(\tau -1) (\lambda _S+\lambda _X))F_d \nonumber \\&+\frac{1}{1+\tau }(2 Q^2 (4 M^2+Q^2)F +(\lambda _S+\lambda _X)F_d-Q^2S_p F_{1+} )\biggr ], \nonumber \\ \theta ^3_{221}= & {} \frac{1}{4M^2}\biggl [ 4Q^2((\tau M^2 -(1+2\tau )S_p)F+4Q^4F_{z_1} \nonumber \\&+\tau (2 (Q^2+4 m^2) (Q^2-2\tau X) +2\tau ^2(XS_p+\lambda _X) \nonumber \\&+(1-\tau +\tau ^2)M^2S_p)F_d+(2 \tau ^2 (XS_p+\lambda _X) \nonumber \\&+Q^2 ((1+\tau )(8m^2-\tau M^2)-2 Q^2-4\tau S_p))F_{1+} \biggl ]\nonumber \\&+\frac{\tau }{4(1+\tau )}(Q^2(4 F+8 F_{z_1}+F_{1+})-S_pF_d),\nonumber \\ \theta ^4_{221}= & {} \frac{1}{4M^2}\biggl [ 2((1+\tau ) (2+5 \tau )Q^2-2\tau (2+3\tau )S)F\nonumber \\&+4(1+2 \tau )Q^2F_{z_1} +\tau ^2(2(1+\tau ) (Q^2-2\tau X+4m^2) \nonumber \\&-\tau ^2(S_p+M^2))F_d +\tau ((1+\tau )(8m^2-6\tau X)\nonumber \\&-\tau ^2(Q^2+M^2) )F_{1+} \biggr ],\nonumber \\ \theta ^5_{221}= & {} \frac{\tau (\tau +1)}{4 M^2}(4(1+\tau )F+4 F_{z_1}+\tau (1+2\tau )(\tau F_d+F_{1+})), \nonumber \\ \theta ^3_{222}= & {} \frac{1}{4M^2}\biggl [Q^2(2(Q^2+2M^2)(4F_{z_1}-\tau F) -S_p(\tau (1+\tau ^2)F_d\nonumber \\&+4(3+\tau )F)) +(\tau (1+\tau ) (\lambda _S+\lambda _X) \nonumber \\&-(2+\tau )Q^2(Q^2-8 m^2) )F_{1+} +\frac{\tau }{1+\tau } \bigl (Q^2 (S_p(4 F+F_d)\nonumber \\&-2(Q^2+2M^2)(F+2F_{z_1}))-(\lambda _S+\lambda _X)F_{1+}\bigr ) \biggr ],\nonumber \\ \theta ^4_{222}= & {} \frac{1}{4M^2} \biggl [4(3+3\tau +\tau ^2)Q^2F+4(3+2\tau )(Q^2F_{z_1}- \tau S F) \nonumber \\&+\tau ^2((1+\tau )Q^2-2 \tau ^2 X)F_d \nonumber \\&+\tau (2 (2+\tau ) (4 m^2-\tau S)-(3-\tau -2\tau ^2)Q^2)F_{1+}\biggr ], \nonumber \\ \theta ^5_{222}= & {} \frac{1+\tau }{4M^2}(2\tau (2+\tau )F+4(1+\tau )F_{z_1}+\tau ^3 (\tau F_d+F_{1+})). \end{aligned}$$
(B.1)

Here \(S_p=S+X=2S-Q^2\), and F and \(F_i\) (\(i=d,1+,z_1,IR\)) can be expressed through the invariant as

$$\begin{aligned} F= & {} \frac{1}{\sqrt{\lambda _q }}, \nonumber \\ F_d= & {} \frac{1}{2\pi \sqrt{\lambda _q }}\int \limits _0^{2\pi }\frac{d\phi _k}{z_1z_2} =\frac{1}{\tau }\Biggl (\frac{1}{C_2}-\frac{1}{C_1}\Biggr ), \nonumber \\ F_{1+}= & {} \frac{1}{2\pi \sqrt{\lambda _q }}\int \limits _0^{2\pi }d\phi _k \Biggl (\frac{1}{z_1}+\frac{1}{z_2}\Biggr ) =\frac{1}{C_1}+\frac{1}{C_2}, \nonumber \\ F_{z_1}= & {} \frac{1}{2\pi \sqrt{\lambda _q }}\int \limits _0^{2\pi }z_1d\phi _k \nonumber \\= & {} \frac{Q^2(S_p-v)+\tau (S(Q^2+v)+2M^2Q^2)}{\lambda _q^{3/2}}, \nonumber \\ F_{IR}= & {} \frac{R^2}{2\pi \sqrt{\lambda _q}}\int \limits _0^{2\pi }d\phi _k{\mathcal {F}}_{IR}=\frac{\tau ^2S_p F_d-(2+\tau )Q^2F_{1+}}{2(1+\tau ) }, \end{aligned}$$
(B.2)

where \({{\mathcal {F}}}_{IR}\) is defined by Eq. (35), while \(z_{1,2}=kk_{1,2}/kp_1\) depends on \(\phi _k\) as

$$\begin{aligned} z_1= & {} \frac{1}{\lambda _q}\Biggl [ Q^2(S_p-v) +\tau ((Q^2+v)S+2M^2Q^2)-2M\sqrt{\lambda _z}\cos \phi _k\Biggr ], \nonumber \\ z_2= & {} \frac{1}{\lambda _q}\Biggl [ Q^2(S_p-v) +\tau ((Q^2+v)(X-v)-2M^2Q^2) \nonumber \\&-2M\sqrt{\lambda _z}\cos \phi _k\Biggr ], \nonumber \\ \lambda _z= & {} (\tau ^q_{max}-\tau )(\tau -\tau ^q_{min})(Q^2(S(X-v)-M^2Q^2) -m^2\lambda _q), \end{aligned}$$
(B.3)

and \(\tau ^q_{max/min}\) defined by Eq. (40).

At last

$$\begin{aligned} C_1= & {} \sqrt{4m^2M^2(\tau ^q_{max}-\tau )(\tau -\tau ^q_{min}) +(Q^2+\tau S)^2}\,, \nonumber \\ C_2= & {} \sqrt{4m^2M^2(\tau ^q_{max}-\tau )(\tau -\tau ^q_{min})+(Q^2+\tau (v-X))^2}\,. \end{aligned}$$
(B.4)

Appendix C: Calculation of \(\delta _S\)

The real photon phase space in the dimensional regularization has a form

$$\begin{aligned} \frac{d^3k }{k_0}\rightarrow & {} \frac{d^{n-1}k^\prime }{(2\pi \mu )^{n-4}k_0^\prime } \nonumber \\= & {} \frac{2\pi ^{n/2-1}k_0^{\prime n-3}dk_0^\prime \sin ^{n-3}\theta _k d\theta _k }{(2\pi \mu )^{n-4}\Gamma (n/2-1)}, \end{aligned}$$
(C.1)

where \(\theta _k\) is defined as the spatial angle between the photon three-momentum and \(\mathbf{k}_{1,2}^\prime \) or \(\mathbf{k}_{s,x}^\prime \) that are introduced below, and \(\mu \) is an arbitrary parameter of the dimension of a mass. Here and later the upper prime index means that the energy or three-momentum is defined in the system \(\mathbf{p}_1\mathbf{+ q=0}\).

The Feynman parametrization of the propagators in \({{\mathcal {F}}}_{IR}\):

$$\begin{aligned} {{\mathcal {F}}}_{IR}= & {} \frac{1}{4k^{\prime 2}_0}\int \limits _0^1dy \Biggl [\frac{2}{1-x\beta _1}-\frac{2}{1-x\beta _2} -\frac{S}{k_{s0}^{\prime 2}(1-x\beta _s)^2} \nonumber \\&+\frac{X}{k_{x0}^{\prime 2}(1-x\beta _x)^2}\Biggr ] =\frac{1}{4k^{\prime 2}_0}\int \limits _0^1dy {{\mathcal {F}}}(x,y), \end{aligned}$$
(C.2)

where y is the Feynman parameter, \(x=\cos \theta _k \), \(\beta _i=|\mathbf{k}^{\prime }_i|/k_{i0}^{\prime }\) for \(i=1,2,s,x\), \(k_{s0}^{\prime }=yk_{10}^{\prime }+(1-y)p_{10}^{\prime }\) and \(k_{x0}^{\prime }=yk_{20}^{\prime }+(1-y)p_{10}^{\prime }\).

After substituting it into definition of \(\delta _S\) in (37) and, using \(\delta \) function, integration of the obtained result over the photon energy we found that

$$\begin{aligned} \delta _S= & {} \frac{1}{2(4\mu \sqrt{\pi })^{n-4}\Gamma (n/2-1)}\int \limits _{-1}^1dx(1-x^2)^{n/2-2} \nonumber \\&\times \int \limits _0^1dy {{\mathcal {F}}}(x,y) \int \limits _0^{{\bar{v}}}\frac{dv}{v}\left( \frac{v}{M}\right) ^{n-4}. \end{aligned}$$
(C.3)

Then, the integration over v, and expansion of the obtained expression into the Laurent series around \(n=4\) result in

$$\begin{aligned} \delta _S= & {} \delta _S^{IR}+\delta _S^1, \end{aligned}$$
(C.4)

where

$$\begin{aligned} \delta _S^{IR}= & {} \frac{1}{2}\biggl [P_{IR}+\log \frac{{{\bar{v}}}}{\mu M }\biggr ] \int \limits _0^1dy \int \limits _{-1}^1dx {{\mathcal {F}}}(x,y) \end{aligned}$$
(C.5)

and

$$\begin{aligned} \delta _S^1= & {} \frac{1}{4} \int \limits _0^1dy \int \limits _{-1}^1dx\log \biggl (\frac{1-x^2}{4}\biggr ) {\mathcal F}(x,y). \end{aligned}$$
(C.6)

Here \(P_{IR}\) is the infrared divergent term defined by Eq. (A.4). Since \(k_{s0}^{\prime 2}-|\mathbf{k}^\prime _s|^2=m_y^2(S)\) and \(k_{x0}^{\prime 2}-|\mathbf{k}^\prime _x|^2=m_y^2(X)\) where

$$\begin{aligned} m_y^2(S)=y(1-y)S+y^2m^2+(1-y)^2M^2, \end{aligned}$$
(C.7)

the integration over x and y variables in \(\delta _S^{IR}\) is performed explicitly:

$$\begin{aligned} \delta _S^{IR}= & {} 2(XL_X-SL_S)\biggl [P_{IR}+\log \frac{{{\bar{v}}}}{\mu M }\biggr ], \end{aligned}$$
(C.8)

where the quantities \(L_S\), and \(L_X\) are defined by Eqs. (20).

For the covariant analytical integration in \(\delta _S^1\) we express the initial and final lepton energies through the invariants:

$$\begin{aligned} k_{10}^\prime =\frac{X }{2M},\qquad k_{20}^\prime =\frac{S }{2M}. \end{aligned}$$
(C.9)

As a result,

$$\begin{aligned} \delta _S^1= & {} \frac{1}{4} S\sqrt{\lambda _S}L_S^2 -\frac{1}{4} X\sqrt{\lambda _X}L_X^2 \nonumber \\&+\frac{S}{\sqrt{\lambda _S}}\mathrm{Li}_2\biggl (\frac{2\sqrt{\lambda _S}}{S+\sqrt{\lambda _S}}\biggr ) -\frac{X}{\sqrt{\lambda _X}}\mathrm{Li}_2\biggl (\frac{2\sqrt{\lambda _X}}{X+\sqrt{\lambda _X}}\biggr ) \nonumber \\&+S_\phi (k_2,p_1,p_2) -S_\phi (k_1,p_1,p_2) . \end{aligned}$$
(C.10)

The function \(S_\phi \) can be expressed through the integration over x and y as

$$\begin{aligned} S_\phi (k_{1,2},p_1,p_2)= & {} \frac{k_{1,2}p_1}{2}\int \limits _{-1}^1dx\int \limits _0^1dy \frac{\log [(1-x^2)/4]}{k^{\prime 2}_{s0,x0}(1-x \beta _{s,x})^2}. \nonumber \\ \end{aligned}$$
(C.11)

The explicit expression for \(S_\phi \) can be found in Appendix B of [22].

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasev, A., Ilyichev, A. Charge-asymmetric correlations in elastic lepton- and antilepton-proton scattering from real photon emission. Eur. Phys. J. A 58, 156 (2022). https://doi.org/10.1140/epja/s10050-022-00805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00805-8

Navigation