Skip to main content
Log in

Effect of nuclear deformation on proton bubble structure in Z = 14 isotopes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We have studied the density distribution in some “bubble” nuclei. The bubble nuclei are characterized by the depletion of nucleonic density at the center of the nucleus. We have explored the effect of nuclear deformation on proton bubble structure in the Si isotopic chain. The Covariant Density Functional Theory (CDFT) with density-dependent meson-exchange (DD-ME2) interaction has been employed. Triaxially constrained calculations are performed to investigate the deformed bubble structure. Deformation causes the mixing of shells hence reducing the bubble effect in the nuclei. The role of nuclear deformation in nuclear density profiles is explored and compared with the spherical limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data generated for the study are included in this published article.]

References

  1. H.A. Wilson, A spherical shell nuclear model. Phys. Rev. 69(9–10), 538 (1946)

    Article  ADS  Google Scholar 

  2. X. Campi, D.W.L. Sprung, Possible bubble nuclei-36Ar and 200Hg. Phys. Lett. B 46(3), 291–295 (1973)

    Article  ADS  Google Scholar 

  3. J.M. Cavedon, B. Frois, D. Goutte, M. Huet, C.N. Ph Leconte, X.-H.P. Papanicolas, S.K. Platchkov, S. Williamson, W. Boeglin et al., Is the shell-model concept relevant for the nuclear interior? Phys. Rev. Lett. 49(14), 978 (1982)

    Article  ADS  Google Scholar 

  4. E. Khan, M. Grasso, J. Margueron, N. Van Giai, Detecting bubbles in exotic nuclei. Nucl. Phys. A 800(1–4), 37–46 (2008)

    Article  ADS  Google Scholar 

  5. M. Grasso, L. Gaudefroy, E. Khan, T. Nikšić, J. Piekarewicz, O. Sorlin, N. Van Giai, D. Vretenar, Nuclear bubble structure in Si 34. Phys. Rev. C 79(3), 034318 (2009)

    Article  ADS  Google Scholar 

  6. Y. Chu, Z. Ren, Z. Wang, T. Dong et al., Central depression of nuclear charge density distribution. Phys. Rev. C 82(2), 024320 (2010)

    Article  ADS  Google Scholar 

  7. Y.Z. Wang, J.Z. Gu, X.Z. Zhang, J.M. Dong et al., Tensor effects on the proton SD states in neutron-rich Ca isotopes and bubble structure of exotic nuclei. Phys. Rev. C 84(4), 044333 (2011)

    Article  ADS  Google Scholar 

  8. J.-M. Yao, S. Baroni, M. Bender, P.-H. Heenen, Beyond-mean-field study of the possible bubble structure of 34 Si. Phys. Rev. C 86(1), 014310 (2012)

    Article  ADS  Google Scholar 

  9. J.M. Yao, H. Mei, Z.P. Li, Does a proton bubble structure exist in the low-lying states of 34Si? Phys. Lett. B 723(4–5), 459–463 (2013)

    Article  ADS  Google Scholar 

  10. T. Duguet, V. Somà, S. Lecluse, C. Barbieri, P. Navrátil, Ab initio calculation of the potential bubble nucleus Si 34. Phys. Rev. C 95(3), 034319 (2017)

    Article  ADS  Google Scholar 

  11. G. Saxena, M. Kumawat, M. Kaushik, S.K. Jain, M. Aggarwal, Bubble structure in magic nuclei. Phys. Lett. B 788, 1–6 (2019)

    Article  ADS  Google Scholar 

  12. G. Saxena, M. Kumawat, B.K. Agrawal, M. Aggarwal, Anti-bubble effect of temperature and deformation: A systematic study for nuclei across all mass regions between A= 20–300. Phys. Lett. B 789, 323–328 (2019)

    Article  ADS  Google Scholar 

  13. B.G. Todd-Rutel, J. Piekarewicz, P.D. Cottle, Spin-orbit splitting in low-J neutron orbits and proton densities in the nuclear interior. Phys. Rev. C 69(2), 021301 (2004)

    Article  ADS  Google Scholar 

  14. J.N. Ginocchio, Relativistic symmetries in nuclei and hadrons. Phys. Rep. 414(4–5), 165–261 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Liu, Y.F. Niu, W.H. Long, New magicity n= 32 and 34 due to strong couplings between dirac inversion partners. Phys. Lett. B 806, 135524 (2020)

    Article  Google Scholar 

  16. J.J. Li, W.H. Long, J. Margueron, N. Van Giai, 48si: An atypical nucleus? Phys. Lett. B 788, 192–197 (2019)

    Article  ADS  Google Scholar 

  17. H. Liang, J. Meng, S.-G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei. Phys. Rep. 570, 1–84 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. J.J. Li, W.H. Long, J.L. Song, Q. Zhao et al., Pseudospin-orbit splitting and its consequences for the central depression in nuclear density. Phys. Rev. C 93(5), 054312 (2016)

    Article  ADS  Google Scholar 

  19. W.H. Long, P. Ring, N. Van Giai, J. Meng et al., Relativistic hartree-fock-bogoliubov theory with density dependent meson-nucleon couplings. Phys. Rev. C 81(2), 024308 (2010)

    Article  ADS  Google Scholar 

  20. W.H. Long, H. Sagawa, J. Meng, N. Van Giai, Evolution of nuclear shell structure due to the pion exchange potential. Europhys. Lett. 82(1), 12001 (2008)

    Article  Google Scholar 

  21. W.H. Long, H. Sagawa, N. Van Giai, J. Meng, Shell structure and \(\rho \)-tensor correlations in density dependent relativistic hartree-fock theory. Phys. Rev. C 76(3), 034314 (2007)

    Article  ADS  Google Scholar 

  22. A. Mutschler, A. Lemasson, O. Sorlin, D. Bazin, C. Borcea, R. Borcea, Z. Dombrádi, J.-P. Ebran, A. Gade, H. Iwasaki et al., A proton density bubble in the doubly magic 34Si nucleus. Nat. Phys. 13(2), 152–156 (2017)

    Article  Google Scholar 

  23. X.-H. Fan, G.-C. Yong, W. Zuo, Probing nuclear bubble configurations by proton-induced reactions. Phys. Rev. C 99(4), 041601 (2019)

    Article  ADS  Google Scholar 

  24. B. Schuetrumpf, W. Nazarewicz, P.-G. Reinhard, Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach. Phys. Rev. C 96(2), 024306 (2017)

    Article  ADS  Google Scholar 

  25. W. Horiuchi, T. Inakura, Deformation effect on nuclear density profile and radius enhancement in light-and medium-mass neutron-rich nuclei. Progr. Theoret. Exp. Phys. 10, 103D02 (2021)

    Article  Google Scholar 

  26. A. Shukla, S. Åberg, Deformed bubble nuclei in the light-mass region. Phys. Rev. C 89(1), 014329 (2014)

    Article  ADS  Google Scholar 

  27. P. Kumar, V. Thakur, V. Kumar, S.K. Dhiman, Possibility of deformed dual bubble-like structure in light nuclei. Eur. Phys. J. Plus 136(10), 1–11 (2021)

    Article  Google Scholar 

  28. S. Åberg, A. Yadav, A. Shukla, Possible dual bubble-like structure predicted by the relativistic Hartree-Bogoliubov model. Int. J. Mod. Phys. E 29, 2050073 (2020)

    Article  ADS  Google Scholar 

  29. J. Meng, H. Toki, J.Y. Zeng, S.Q. Zhang, S.-G. Zhou, Giant halo at the neutron drip line in Ca isotopes in relativistic continuum Hartree-Bogoliubov theory. Phys. Rev. C 65(4), 041302 (2002)

    Article  ADS  Google Scholar 

  30. V. Thakur, P. Kumar, S. Thakur, S. Thakur, V. Kumar, S.K. Dhiman, Microscopic study of the shell structure evolution in isotopes of light to middle mass range nuclides. Nucl. Phys. A 1002, 121981 (2020)

    Article  Google Scholar 

  31. P. Kumar, S.K. Dhiman, Microscopic study of shape evolution and ground state properties in even-even CD isotopes using covariant density functional theory. Nucl. Phys. A 1001, 121935 (2020)

    Article  Google Scholar 

  32. P. Kumar, V. Thakur, S. Thakur, V. Kumar, S.K. Dhiman, Evolution of nuclear shapes in light nuclei from proton-to neutron-rich side. Acta Phys. Pol. B 52(5), 401 (2021)

    Article  MathSciNet  Google Scholar 

  33. P. Kumar, V. Thakur, S. Thakur, V. Kumar, S.K. Dhiman, Nuclear shape evolution and shape coexistence in Zr and Mo isotopes. Eur Phys J A 57(1), 1–13 (2021)

    Article  ADS  Google Scholar 

  34. S. Thakur, P. Kumar, V. Thakur, V. Kumar, S.K. Dhiman, Shape transitions and shell structure study in zirconium, molybdenum and ruthenium. Nucl. Phys. A 1014, 122254 (2021)

    Article  Google Scholar 

  35. G.A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, New relativistic mean-field interaction with density-dependent meson-nucleon couplings. Phys. Rev. C 71(2), 024312 (2005)

    Article  ADS  Google Scholar 

  36. B.D. Serot, J.D. Walecka, Recent progress in quantum hadrodynamics. Int. J. Mod. Phys. E 6(04), 515–631 (1997)

    Article  ADS  Google Scholar 

  37. G.A. Lalazissis, Relativistic Hartree-Bogoliubov theory and the isospin dependence of the effective nuclear force. Prog. Part. Nucl. Phys. 59, 277–284 (2007)

    Article  ADS  Google Scholar 

  38. S. Typel, H.H. Wolter, Relativistic mean field calculations with density-dependent meson-nucleon coupling. Nucl. Phys. A 656(3–4), 331–364 (1999)

    Article  ADS  Google Scholar 

  39. T. Nikšić, N. Paar, D. Vretenar, P. Ring, DIRHB-A relativistic self-consistent mean-field framework for atomic nuclei. Comput. Phys. Commun. 185(6), 1808–1821 (2014)

    Article  ADS  MATH  Google Scholar 

  40. F. Hofmann, C.M. Keil, H. Lenske, Density dependent hadron field theory for asymmetric nuclear matter and exotic nuclei. Phys. Rev. C 64(3), 034314 (2001)

    Article  ADS  Google Scholar 

  41. T. Nikšić, D. Vretenar, P. Finelli, P. Ring, Relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings. Phys. Rev. C 66(2), 024306 (2002)

    Article  ADS  Google Scholar 

  42. F. De Jong, H. Lenske, Asymmetric nuclear matter in the relativistic Brueckner-Hartree-Fock approach. Phys. Rev. C 57(6), 3099 (1998)

    Article  ADS  Google Scholar 

  43. Y. Tian, Z.-Y. Ma, P. Ring, A finite range pairing force for density functional theory in superfluid nuclei. Phys. Lett. B 676(1–3), 44–50 (2009)

    Article  ADS  Google Scholar 

  44. T. Nikšić, P. Ring, D. Vretenar, Y. Tian, Z. Ma, 3D relativistic Hartree-Bogoliubov model with a separable pairing interaction: Triaxial ground-state shapes. Phys. Rev. C 81(5), 054318 (2010)

    Article  ADS  Google Scholar 

  45. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Relativistic Hartree-Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure. Phys. Rep. 409(3–4), 101–259 (2005)

    Article  ADS  Google Scholar 

  46. Y. Tian, Z.-Y. Ma, P. Ring, Axially deformed relativistic Hartree Bogoliubov theory with a separable pairing force. Phys. Rev. C 80(2), 024313 (2009)

    Article  ADS  Google Scholar 

  47. W. Koepf, P. Ring, Has the nucleus 24mg a triaxial shape? a relativistic investigation. Phys. Lett. B 212(4), 397–401 (1988)

    Article  ADS  Google Scholar 

  48. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Péru, N. Pillet, G.F. Bertsch, Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 81(1), 014303 (2010)

    Article  ADS  Google Scholar 

  49. B. Pritychenko, M. Birch, B. Singh, M. Horoi, Tables of E2 transition probabilities from the first 2+ states in even-even nuclei. At. Data Nucl. Data Tables 107, 1–139 (2016)

  50. D. Rychel, H.J. Emrich, H. Miska, R. Gyufko, C.A. Wiedner, Charge distribution of the neven sulphur isotopes from elastic electron scattering. Phys. Lett. B 130(1–2), 5–8 (1983)

    Article  ADS  Google Scholar 

  51. J. Dechargé, J.-F. Berger, M. Girod, K. Dietrich, Bubbles and semi-bubbles as a new kind of superheavy nuclei. Nucl. Phys. A 716, 55–86 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PK would like to acknowledge the financial support provided by Council of Scientific and Industrial Research (CSIR), New Delhi under Senior Research Fellowship scheme vide reference no. 09/237(0165)/2018-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar.

Additional information

Communicated by Denis Lacroix.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Thakur, V., Thakur, S. et al. Effect of nuclear deformation on proton bubble structure in Z = 14 isotopes. Eur. Phys. J. A 58, 143 (2022). https://doi.org/10.1140/epja/s10050-022-00801-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00801-y

Navigation