Skip to main content
Log in

The neutron lifetime anomaly: analysis of charge exchange and molecular reactions in a proton trap

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Current values of the neutron lifetime, determined by two entirely distinct measurement techniques of comparable precision, differ to a statistically significant degree, a result which has become known as the neutron lifetime anomaly. In a previous publication we have shown that the discrepancy can be resolved by taking account of electron transfer charge exchange reactions between residual gases and final state protons stored in a quasi-Penning trap. In this article we analyze unique experimental data obtained during the course of the first published neutron lifetime measurement that used a proton trap. These data employed trapping times greater by a factor of a thousand than became conventional in later experiments. The data show that significant event losses occur, probably due to residual gas other than molecular hydrogen or helium. Additionally, the molecular ion H2+ produced by charge exchange in H2 undergoes secondary molecular reactions, producing the molecular ion H3+ and the ion HeH+ which is also produced by secondary reactions in helium. These ions could result in event losses depending on the energy and time-of-flight acceptance windows. Energy losses are evaluated and ionic compositions are quantitively assessed as functions of trapping time and residual gas density to account for an energy spectrum obtained using a silicon surface barrier detector. The spectrum is strongly influenced by charge exchange, secondary molecular reactions and backscattering in the detector dead layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: Data used are referenced or the source is acknowledged. Data generated are in the manuscript.]

References

  1. J.S. Nico, J. Phys. G: Nucl. Part. Phys. 36, 104001 (2009). https://doi.org/10.1088/0954-3899/36/10/104001

    Article  ADS  Google Scholar 

  2. D. Dubbers, M.G. Schmidt, Rev. Mod. Phys. 83, 1111 (2011). https://doi.org/10.1103/RevModPhys.83.1111

    Article  ADS  Google Scholar 

  3. D. Castelvecchi, Nature 598, 549 (2021)

    Article  ADS  Google Scholar 

  4. B. Fornal, B. Grinstein, Phys. Rev. Lett. 120, 191801 (2018). https://doi.org/10.1103/PhysRevLett.120.191801

    Article  ADS  Google Scholar 

  5. A.N. Ivanov, R. Höllwieser, N.I. Trotskaya, M. Wellenzohn, Y.A. Berdnikov, Nucl. Phys. B 938, 114 (2019). https://doi.org/10.1016/j.nuclphysb.2018.11.005

    Article  ADS  Google Scholar 

  6. U.C.N.A. Collaboration, Phys. Rev. C 97, 052501(R) (2018). https://doi.org/10.1103/PhysRevC.97.052501

    Article  ADS  Google Scholar 

  7. B. Märkisch, H. Abele, D. Dubbers, H. Saul, T. Soldner, J. Surf. Investig. 14 (Suppl. 1), S140–S143 (2020)

    Article  Google Scholar 

  8. J. Byrne, P.G. Dawber, C.G. Habeck, S.J. Smidt, J.A. Spain, A.P. Williams, Europhys. Lett. 33, 187 (1996). https://doi.org/10.1209/epl/i1996-00319-x

    Article  ADS  Google Scholar 

  9. J.S. Nico, M.S. Dewey, D.M. Gilliam, F.E. Wietfeldt, X. Fei, W.M. Snow, G.L. Greene, J. Pauwels, R. Eykens, A. Lamberty, J. Van Gestel, R.D. Scott, Phys. Rev. C 71, 055502 (2005). https://doi.org/10.1103/PhysRevC.71.055502

    Article  ADS  Google Scholar 

  10. J. Byrne, D.L. Worcester, J. Phys. G: Nucl. Part. Phys. 46, 085001 (2019). https://doi.org/10.1088/1361-6471/ab256b

    Article  ADS  Google Scholar 

  11. A.P. Serebrov, M.E. Chaikovskii, G.N. Klyushnikov, O.M. Zherebysov, A.V. Chechkin, Phys. Rev. D 103, 074010 (2021). https://doi.org/10.1103/PhysRevD.103.074010

    Article  ADS  Google Scholar 

  12. N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (Elsevier, North Holland, 2007). https://doi.org/10.1016/B978-0-444-52965-7.50022-2

    Book  MATH  Google Scholar 

  13. E. Lukacs, Characteristic Functions, 2nd edn. (C. Griffin & Co., London, 1970)

    MATH  Google Scholar 

  14. J. Byrne, P.G. Dawber, M.G.D. van der Grinten, C.G. Habeck, F. Shaikh, J.A. Spain, R.D. Scott, C.A. Baker, K. Green, O. Zimmer, J. Phys. G 28, 1325 (2002). (Appendix B)

    Article  ADS  Google Scholar 

  15. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover, NewYork, 1973). (#29 pages 1019-1030 and pages 948-49, 990)

    Google Scholar 

  16. J. Byrne, in Fundamental Physics with Reactor Neutrons and Neutrinos, ed. by T. von Egidy (IOP Conference Series Number 42, Bristol, 1978), pages 28–37.

  17. J. Byrne, J. Morse, K.F. Smith, F. Shaikh, K. Green, G.L. Greene, Phys. Lett. B 92, 274 (1980). https://doi.org/10.1016/0370-2693(80)90262-2

    Article  ADS  Google Scholar 

  18. X. Urbain, N. de Ruette, V.M. Andrianarijaona, M.F. Martin, L. Fernandez Menchero, L.F. Errea, L. Mendezi, L. Rabadan, B. Pons, Phys. Rev. Lett. 111, 203201 (2013). https://doi.org/10.1103/PhysRevLett.111.203201

    Article  ADS  Google Scholar 

  19. Y. Beers, Introduction to the Theory of Error, 2nd edn. (Academic Press, 1957)

    Google Scholar 

  20. TU Wien, Institut für Angewandte Physik, www.iap.tuwien.ac.at/www/surface/vapor-pressure

  21. W.T. Eadie, D. Dryard, F.E. James, M. Roos, B. Sadoulet, Statistical Methods in Experimental Physics (North Holland, Amsterdam, 1971). (pages 28, 40-42, 68-69)

    MATH  Google Scholar 

  22. L. Landau, J. Phys. (USSR) 8, 201–208 (1944). (Collected Papers of L.D. Landau, ed. by D. ter Haar (Gordon and Breach, New York, 1965) pg. 417–424)

    Google Scholar 

  23. K.R. Symon, Fluctuations in Energy Loss by High-Energy Charged Particles in Passing Though Matter (PhD thesis, Physics Dept, Harvard University, 1948).

  24. J.A. Phillips, Phys. Rev. 97, 404–410 (1955). https://doi.org/10.1103/PhysRev.97.404

    Article  ADS  Google Scholar 

  25. S.A. Allison, Rev. Mod. Phys. 30, 1137–1168 (1958), Section VB, Table V-20C, page 1158. https://doi.org/10.1103/RevModPhys.30.1137

  26. International Commission on Radiation Units and Measurements, ICRU Report 49, Stopping Powers and Ranges for Protons and Alpha Particles, (ICRU 1993). https://doi.org/10.1093/jicru_os25.2.1; For Introduction pg 1. https://doi.org/10.1093/jicru_os25.2.107; For Main Proton Tables. https://doi.org/10.1093/jicru_os25.2.183; For Main Alpha Particle Tables.

  27. S. Miller, J. Tennyson, Rev. Mod. Phys. 92, 035003 (2020). https://doi.org/10.1103/RevModPhys.92.035003

    Article  ADS  Google Scholar 

  28. T. Oka, Proc. Natl. Acad. Sci. 103, 12235–12242 (2006). https://doi.org/10.1073/pnas.0601242103

    Article  ADS  Google Scholar 

  29. I. Savic, D. Gerlich, O. Asvany, P. Jusko, S. Schlemmer, Mol. Phys. 113, 2320–2332 (2015). https://doi.org/10.1080/00268976.2015.1037802

    Article  ADS  Google Scholar 

  30. A.H. Morton, D.A. Aldcroft, M.F. Payne, Phys. Rev. 165, 415–419 (1968). https://doi.org/10.1103/PhysRev.165.415

    Article  ADS  Google Scholar 

  31. R.D. Evans, The Atomic Nucleus (McGraw Hill, New York, 1955). (pages 410–417 and 470–510)

    MATH  Google Scholar 

  32. H.A. Enge, Introduction to Nuclear Physics (Addison Wesley, Reading, Mass, 1996), pp. 376–379

    Google Scholar 

  33. W.E. Meyerhof, Elements of Nuclear Physics (McGraw Hill, New York, 1997), pp. 174–180

    Google Scholar 

  34. R.S. Gao, L.K. Johnson, G.J. Smith, C.L. Hakes, K.A. Smith, N.F. Lane, R.F. Stebbings, M. Kimura, Phys. Rev. A 44, 5599–5604 (1991). https://doi.org/10.1103/PhysRevA.44.5599

    Article  ADS  Google Scholar 

  35. L. Savic, S. Schlemmer, D. Gerlich, ChemPhysChem 21, 1429–1435 (2020). https://doi.org/10.1002/cphc.202000258

    Article  Google Scholar 

  36. H. Bateman, Proc. Camb. Phil. Soc. 15, 423–427 (1910)

    Google Scholar 

  37. H. Bateman, Partial Differential Equations of Mathematical Physics (Cambridge University Press 1932; American edition, Dover, NewYork 1943)

  38. M.P. Langevin, Ann. Chem. 29, 294 (1905)

    Google Scholar 

  39. N. Bohr, Kgl. Danske Vidensk. Selsik., Mat.-Phys. Medd (1948). https://doi.org/10.1016/S1876-0503(08)70172-5

    Article  Google Scholar 

  40. E. Everhart, G. Stone, R.J. Carbone, Phys. Rev. 99, 1287–1290 (1955). https://doi.org/10.1103/PhysRev.99.1287

    Article  ADS  Google Scholar 

  41. L.P. Theard, W.T. Huntress, J. Chem. Phys. 60, 2840–2848 (1974). https://doi.org/10.1063/1.1681453

    Article  ADS  Google Scholar 

  42. R.D. Smith, D.L. Smith, J.H. Futrell, Int. J. Mass Spectrometry Ion Phys. 19, 369–394 (1976). https://doi.org/10.1016/0020-7381(76)80020-4

    Article  ADS  Google Scholar 

  43. D. De Fazio, M. de Castro-Vitores, A. Aguado, V. Aquilanti, S. Cavalli, J. Chem. Phys. 137, 244306 (2012). https://doi.org/10.1063/1.4772651

    Article  ADS  Google Scholar 

  44. T.S. Chu, R.F. Lu, K.L. Han, X.N. Tang, H.F. Xu, C.Y. Ng, J. Chem. Phys. 122, 244322 (2005). https://doi.org/10.1063/1.1948380

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank John Morse for many informative discussions and permission to reproduce Fig. 1a and b from his 1980 D. Phil thesis (University of Sussex), along with the Linear Regression data listed in Table 2. Extensive assistance of staff at the NIST Research Library, especially Alan Olson, is very gratefully acknowledged. We also thank Xavier Urbain for communications on the 2013 H2 charge exchange data and Dario De Fazio for communications on the 2012 helium + H2+ molecular reaction analysis at low energies. We thank Michael Weinrich for helpful comments on the manuscript.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Worcester.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Communicated by Klaus Blaum.

Dedicated to the memory of the late Norman F. Ramsey.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrne, J., Worcester, D.L. The neutron lifetime anomaly: analysis of charge exchange and molecular reactions in a proton trap. Eur. Phys. J. A 58, 151 (2022). https://doi.org/10.1140/epja/s10050-022-00786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00786-8

Navigation