Skip to main content
Log in

Cross-sections of the gamma-producing 25Mg(p,pγ1-0)25Mg nuclear reaction at Elab = 870–4020 keV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Although the γ-ray line emitting 25Mg(p,pγ1–0)25Mg (Eγ1–0 = 585 keV) reaction has been already studied for its relevance in nuclear structure and in material, biomedical, environmental and cultural heritage sciences, significant discrepancies exist in the data. The present paper reports on a new set of cross-section measurements for this reaction in the energy range Elab = 869–4017 keV. The 585 keV γ-rays were detected at θlab = 130° using an HPGe detector. The cross-sections were measured with a small energy step leading to a clear definition of resonances, an aspect that is absent in most previous cross-sections data. Validation of the measured results was made against thick target yields. Several resonances were found for 25Mg(p,pγ1–0)25Mg, which correspond to new 26Al levels, still not listed in nuclear databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data are available on request from the authors.]

References

  1. National Nuclear Data Center, NNDC, https://www.nndc.bnl.gov/nudat3/

  2. Nuclear Data Services, IAEA, https://nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

  3. M.S. Basunia, A.M. Hurst, Nucl. Data Sheets 134, 1 (2016). https://doi.org/10.1016/j.nds.2016.04.001

    Article  ADS  Google Scholar 

  4. P.R.P. Allegro, M.A. Rizzutto, N.H. Medina, Microchem. J. 126, 287 (2016). https://doi.org/10.1016/j.microc.2015.12.012

    Article  Google Scholar 

  5. I. Zamboni, Z. Siketic, M. Jakšic, I. Bogdanovic Radovic, Nucl. Instrum. Methods Phys. Res. B 342, 266 (2015). https://doi.org/10.1016/j.nimb.2014.10.022

  6. N. Sharifzadeh, O. Kakuee, S. Mohammadi, Nucl. Instrum. Methods Phys. Res. B 372, 109 (2016). https://doi.org/10.1016/j.nimb.2016.02.021

    Article  ADS  Google Scholar 

  7. K. Preketes-Sigalas et al., Nucl. Instrum. Methods Phys. Res. B 386, 4 (2016). https://doi.org/10.1016/j.nimb.2016.08.020

    Article  ADS  Google Scholar 

  8. M.J. Kenny, J.R. Bird, E. Clayton, Nucl. Instrum. Methods Phys. Res. 168, 115 (1980). https://doi.org/10.1016/0029-554X(80)91240-9

    Article  ADS  Google Scholar 

  9. A. Anttila, R. Hänninen, J. Räisänen, J. Radioanal. Nucl. Chem. 62, 293 (1981). https://doi.org/10.1007/BF02517360

    Article  Google Scholar 

  10. A.Z. Kiss et al., J. Radioanal. Nucl. Chem. 89, 123 (1985). https://doi.org/10.1007/BF02070210

    Article  Google Scholar 

  11. A. Savidou, X. Aslanoglou, T. Paradellis, M. Pilakouta, Nucl. Instrum. Methods Phys. Res. B 152, 12 (1999). https://doi.org/10.1016/S0168-583X(98)00962-8

    Article  ADS  Google Scholar 

  12. M. Fonseca, A.P. Jesus, H. Luís, R. Mateus, J. Cruz, L. Gasques, D. Galaviz, J.P. Ribeiro, Nucl. Instrum. Methods Phys. Res. B 268, 1806–1808 (2010). https://doi.org/10.1016/j.nimb.2010.02.079

    Article  ADS  Google Scholar 

  13. V. Manteigas, L. Martins, J. Cruz, M. Fonseca, A.P. Jesus, Comput. Phys. Commun. 275, 108307 (2022). https://doi.org/10.1016/j.cpc.2022.108307

    Article  Google Scholar 

  14. N. Pessoa Barradas, J. Cruz, M. Fonseca, A.P. de Jesus, A. Lagoyannis, V. Manteigas, M. Mayer, K. Preketes-Sigalas, P. Dimitriou, Nucl. Instrum. Methods Phys. Res. B 468, 37–47 (2020). https://doi.org/10.1016/j.nimb.2020.02.019

  15. E. Alves et al., Eur. Phys. J. Plus 136, 684 (2021). https://doi.org/10.1140/epjp/s13360-021-01629-z

    Article  Google Scholar 

  16. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM: The Stopping and Range of Ions in Matter, 2008.

  17. A.P. Jesus, B. Braizinha, J. Cruz, J.P. Ribeiro, Nucl. Instrum. Methods Phys. Res. B 174, 229 (2001). https://doi.org/10.1016/S0168-583X(00)00521-8

    Article  ADS  Google Scholar 

  18. K. Spyrou, C. Chronidou, S. Harissopulos, S. Kossionides, T. Paredellis, Z. Phys. A 357, 283 (1997).

  19. V. Manteigas, J. Cruz, M. Fonseca, A.P. Jesus, Nucl. Instrum. Methods Phys. Res. B 502, 142 (2021). https://doi.org/10.1016/j.nimb.2021.06.006

    Article  ADS  Google Scholar 

  20. F. Strieder et al., Phys. Lett. B 707, 60 (2012). https://doi.org/10.1016/j.physletb.2011.12.029

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge LIBPhys (UID/FIS/04559/2021) and NOVA.ID.FCT. The authors acknowledge the collaboration with the Laboratory for Underground Nuclear Astrophysics (LUNA), located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, for providing the 25Mg enriched target [20].

Funding

This research was funded by Fundação para a Ciência e a Tecnologia grants number UID/FIS/04559/2021 (LIBPhys).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cruz.

Additional information

Communicated by Anu Kankainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, J., Fonseca, M., Mateus, R. et al. Cross-sections of the gamma-producing 25Mg(p,pγ1-0)25Mg nuclear reaction at Elab = 870–4020 keV. Eur. Phys. J. A 58, 128 (2022). https://doi.org/10.1140/epja/s10050-022-00780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00780-0

Navigation