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Abstract We present an approach that allows one to obtain
information on the compositeness of molecular states from
combined information of the scattering length of the hadronic
components, the effective range, and the binding energy. We
consider explicitly the range of the interaction in the formal-
ism and show it to be extremely important to improve on the
formula of Weinberg obtained in the limit of very small bind-
ing and zero range interaction. The method allows obtaining
good information also in cases where the binding is not small.
We explicitly apply it to the case of the deuteron and the
D∗
s0(2317) and D∗

s1(2460) states and determine simultane-
ously the value of the compositeness within a certain range,
as well as get qualitative information on the range of the
interaction.

1 Introduction

The determination of the compositeness, or molecular com-
ponent of physical hadronic states has been the subject of
multiple discussions starting from the pioneer work of Wein-
berg [1]. In one of the most popular variants of the relation-
ship of low energy scattering observables to the composite-
ness XW , or probability to have a molecular state of two
hadrons, one finds

a = R

[
2XW

1 + XW
+ O

(
Rtyp

R

) ]
(1)

r0 = R

[
− 1 − XW

XW
+ O

(
Rtyp

R

) ]
(2)
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R = 1/
√

2μB, μ = m1m2
m1+m2

, B = Eth − E0, E0 and Eth the
energy of the bound state and the threshold energy of the two
particles with massm1andm2, with a, r0 the scattering length
and effective range in the approximation of the scattering
matrix,

f = 1

k cot δ − ik
≈ 1

− 1
a + 1

2r0k2 − ik
(3)

Equations (1), (2) hold in the limit of small binding energy
B and O(

Rtyp
R ) are corrections to the formula stemming from

a typical scale Rtyp related to the range of the interaction.
If we invert Eqs. (1), (2), we find

XW = a

2R − a
+ O

(
Rtyp

R

)
(4)

XW = R

R − r0
+ O

(
Rtyp

R

)
(5)

and one also defines Z = 1 − XW as the amount of non
molecular component of the bound state.

If we apply these rules to the deuteron, where for I = 0,
J = 1, we have

a = 5.419(7)fm,

r0 = 1.766(8)fm,

B = 2.224575(9)MeV (6)

one finds the well known surprise [2–4] that

XW = 1.68 from Eq. (4),

XW = 1.69 from Eq. (5) (7)
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with an unacceptable result since the actual compositeness,
X , should be X ≤ 1. Eq. (2) also yields an unacceptable
result, which forces r0 to be negative if XW has an acceptable
value around 1, Yet, the test is accepted as a good guess for a
molecularnp structure of the deuteron because the alternative
is even worse: For X = 0.1, Eq. (2) yields r0 = −38.86 fm,
very far from the relative small number of Eq. (6). Indeed,
this is the argument of Weinberg quoting “The true token
that the deuteron is composite is that r0 is small and positive
rather than large and negative”. Since for different reasons
the molecular picture of the deuteron is acceptable, one can
only conclude that the corrections O(

Rtyp
R ) in Eqs. (1), (2) are

very large. However, they are difficult to quantify in terms of
low energy variables.

Lots of energies have been devoted to improve the Wein-
berg conditions, Eqs. (1), (2), and understand the meaning
of the compositeness in the presence of coupled channels or
energy dependent potentials [2,6–20]. Very recently the role
of the range of the interaction has been revisited in [4,21].
In [21] a simple field theoretical approach is done contain-
ing a point like interaction and a derivative coupling term. A
different version is also studied incorporating an additional
field that couples to the two body scattering state. In these
cases it is shown that the effective range r0 originates from
the derivative coupling interaction or from the channel cou-
pling to the bare state. It is suggested that Rtyp in Eqs. (1), (2)
should be Rtyp = max[Rint, Reff ], where Rint is 1/�(�, cut-
off or range of the interaction) and Reff is a length scale in
the effective range expansion of Eq. (3). The developments
are formal and some examples are worked out in [22].

A different approach is followed in [4]. The Low equa-
tion [1] for the scattering matrix is used and the non pole
term is neglected. Some form factors are introduced and an
expression for X is obtained which depends on phase shifts
obtained with some approximations, which has the virtue of
being smaller than 1. A discussion is done on how the results
can depend on the form factors assumed, which neglecting
the non pole term and making a separable ansatz for the T -
matrix can be worked out up to order O(p2). In Ref. [5] the
effect of coupled channels and the range of the interaction
are also addressed and shown to be relevant to go beyond
Eqs. (1), (2).

The purpose of the present work is different. We share with
the former works the idea that the range of the interaction is
relevant in the determination of X . The aim, however, is to
see how much information can we obtain from the combined
knowledge of a, r0 and the binding, not knowing exactly
which is the range of the interaction. For this purpose we
start with a formalism that takes into account the range of the
interaction and incorporates a possible energy dependence of
the potential. With the information on the binding, a and r0

we investigate the range of values of X that the formalism

provides. As we shall see, we can obtain a more accurate
prediction for X for the deuteron, and we can obtain a positive
r0, while at the same time we obtain a qualitative information
on the range of the interaction. We also discuss two more
states, the D∗

s0(2317) and D∗
s1(2460), which were studied

in detail from a lattice QCD perspective in [23], and the
value of X , a, r0 were determined. The lattice data of [23]
contain more information than just a, r0 and the binding,
which allowed one to determine X with relative precision. In
the present work we shall exploit how much information we
can get on X from the knowledge of a, r0 and B alone.

2 Formalism

2.1 Scattering matrix with a separable potential

The formalism will be based on a derivation of the scatter-
ing matrix using a separable potential. We state that at the
beginning such that the approximations done and the limi-
tations are clear. We shall discuss later on how accurate this
assumption can be. We follow closely the work of Ref. [7]
for the derivation, and do it for one channel for simplicity.
The extension to coupled channels is trivial and is also done
in Ref. [7]. We start from a potential written in momentum
space as

〈p′|V |p〉 = V (p′,p) = V θ(qmax − p′)θ(qmax − p) (8)

where p′, p are |p′|, |p| respectively. It is clear from the
beginning what is the meaning of qmax. It gives the range of
the potential in momentum space. Its inverse would provide
the range of the interaction in coordinate space. We have
chosen a sharp cut off in the interaction, but the results are
easily extended to any other type of separable potential. Next
we solve the Bethe Salpeter equation with this potential to
obtain the T -matrix.

〈p′|T |p〉 = T (p′,p)

= V (p′,p)+i
∫

d4q

(2π)4

V (p′,q)

q2 − m2
1 + iε

T (q,p)

(P − q)2 − m2
2 + iε

(9)

where m1, m2 are the masses of the interacting particles (we
use the meson formalism) and P is the total four momentum
of the pair. The q0 integration is readily done using Cauchy’s
residues with the result

T (p′,p)

= V (p′,p) +
∫

d3q
(2π)3 V (p′,q)T (q,p)

w1(q) + w2(q)

2w1(q)w2(q)

× 1

(P0)2 − (w1(q) + w2(q))2 + iε
(10)
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with wi (q) =
√
q2 + m2

i , (P0)2 = s.
By expanding Eq. (10) in a power series we see that in all

terms we have

θ(qmax − p′|)θ(qmax − q)θ(qmax − p) (11)

with q = |q|, and hence we factorize θ(qmax − p′)θ
(qmax − p) outside the integrand with the result that

T (p′,p) = θ(qmax − p′)θ(qmax − p)T

where

T = V + VGT (12)

with

G(s) =
∫

|q|<qmax

d3q
(2π)3

w1(q) + w2(q)

2w1(q)w2(q)

× 1

s − (w1(q) + w2(q))2 + iε
(13)

Eq. (12) becomes then an algebraic equation where

T = [1 − VG]−1V (14)

This is the equation used for instance in studies of the
chiral unitary approach [24] for meson meson interaction,
from where poles and couplings of bound states are obtained.

The results obtained here are usually presented from a
different perspective in [24–26]. One can reach the same
conclusion about the T -matrix by assuming that one can fac-
torize on shell the V and T matrices inside the integral of
Eq. (10), obtaining Eq. (12), and the G-function is then regu-
larized with a cut off. The on shell factorization is justified in
[24,25] showing that the contribution of the off shell part of
the potential in Eq. (10) using chiral Lagrangians can be reab-
sorbed in the on shell potential itself. A different justification
can be found using a dispersion relation as done in [26]. If
one neglects the energy dependence of the contribution from
the left hand cut, the on shell factorization also arises. In
Ref. [27] it is shown that this is a very good approximation
for meson meson interactions in the range of energies where
the low energy resonances appear. Further discussion on this
issue is shown in the recent review [28]. The success of the
chiral unitary approach to obtain the spectrum of low lying
resonances and describe features of many reactions has been
reported in some reviews [29,30].

We have shown the equivalence of using a separable poten-
tial of Eq. (8) and the on shell factorization used in the chiral
unitary approach. For the present work the perspective of the
separable potential is better because it allows to identify qmax

with the range of the interaction from the very beginning.

Equation (14) is generalized to coupled channels with
exactly the same form expect the 1 is the identity matrix
in the dimension of the number of channels, n. Vi j is the
n × n transition potential matrix and G is the diagonal G-
matrix with the G-function for each of the channels. In the
next subsection we shall work with two channels assuming
that the two channels account for the whole wave function
of a certain state, and then will eliminate one of the chan-
nels, investigating how we can obtain the probability of the
remaining channel working with that channel alone.

2.2 Formalism for the meson meson interaction in two
channels

Let us start with a meson meson interaction and the formalism
employed in the studies of the chiral unitary approach. To
put the problem in perspective let us start with a two channel
problem, in which one channel is more important than the
other and can lead to a bound state with this interaction. Let
the interaction be given by the matrix

V =
(
V11 V12

V12 0

)
, (15)

where for simplicity we have made V22 = 0. The formal-
ism can be generalized to more coupled channels keeping
all Vi j terms [31]. We assume Vi j in Eq. (15) to be energy
independent. The T matrix is then given by Eq. (14), where
G = diag(Gl) is the loop function of two mesons, with the
cut off method as shown in Eq. (13), where Gl is the G-
function evaluated for each of the channels.

Let us assume that Eq. (14) has a pole at sR corresponding
to a bound state in channels 1 and 2. We define the couplings
of the state to the channels 1 and 2 as

g2
1 = lim

s−sR
(s − sR)T11, g2

2 = lim
s−sR

(s − sR)T22

and we can explicitly prove that (see section 5 of [32])

−g2
1
∂G

∂s
|s=sR − g2

2
∂G

∂s
|s=sR = P1 + P2 = 1 (16)

where P1, P2 represent the probability to find the state in the
channel 1 and 2. A general proof for many channels can be
seen in [7,31]. As shown in section 6 of Ref. [32], one can
construct an effective potential for channel 1

Veff = V11 + V 2
12G2 (17)

such that T11 and g2
1 are the same in channel 1 as a single

channel using Veff than with the two channels problem, and
hence −g2

1
∂G1
∂s is still the probability to the find channel 1 in

the molecular state. Note that the price we payed to eliminate
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Fig. 1 The G(s) function for the DK and ηDs channels at qmax =
650 MeV. The black solid line and red dashed line represent the DK
and ηDs channels respectively, with the black dotted line, red dashed
dotted line and blue dashed-dotted-dotted line corresponding to

√
s =

2317 MeV, the threshold of the K D channel, and the threshold of the
ηDs channel

channel 2 is that the effective potential in channel 1, Eq. (17)
is now energy dependent because G2 depends on the energy.
Now we have with one channel

T11 = [1 − VeffG1]−1Veff = 1

V−1
eff − G1

(18)

g2
1 = lim

s−sR
(s − sR)T11 = 1

∂V−1
eff

∂s |sR − ∂G
∂s |sR

and hence

−g2
1
∂G1

∂s
|sR = P1,

g2
1
∂V−1

eff

∂s
|sR = −g2

1
1

V 2
eff

∂Veff

∂s
= 1 − P1 ≡ P2 ≡ Z (19)

To have a feeling of the energy dependence of Veff , we par-
ticularize to a case that will be studied later, the D∗

s0(2317),
which qualifies as a molecular state of DK and ηDs , mostly
DK [33–39]. In Fig. 1 we show the G(s) function for the
DK and ηDs channels. We can see that around the energy
of the D∗

s0(2317), between
√
s = 2317 MeV and the DK

threshold, the GηDs (s) function is very well represented by
a linear function in s.

We shall then assume as a general rule that the G function
of possible missing channels, when studying a given one, can
be approximated by a linear function of s in the neighborhood
of the pole of the studied channel, such that we can well
approximate Veff by

Veff = V0 + β(s − s0) (20)

with β negative, as seen in Fig. 1. If we eliminated some
channel with a threshold below the threshold of the studied
channel, β would be positive. It is possible to tackle also
this case, but in this case it would be convenient to consider
explicitly the possible decay channels. Hence, we stick to
Eq. (20) with β ≤ 0.

The scattering matrix with potential Veff of Eq. (20) is
given for the one channel system that we wish to investigate
by

T (s) = 1

[V0 + β(s − s0)]−1 − G(s)
(21)

and we impose that it has a pole at s0, giving rise to a state
whose nature we want to investigate. We will have

V−1
0 − G(s0) = 0, V0 = 1

G(s0)
(22)

Thus,

T (s) = 1[
1

G(s0)
+ β(s − s0)

]−1 − G(s)
(23)

where we have eliminated the unknown V0.
It is easy to establish the connection of this expression with

the current amplitude of Quantum Mechanics by restoring the
normalization of T (s), governed by the normalization of the
G(s) function of Eq. (13). We have

1

C

{ [
1

G(s0)
+ β(s − s0)

]−1 − G(s)

} ≈ 1

− 1
a + 1

2r0k2 − ik

(24)

with C a normalization constant. In the denominator of the
right hand side there would be more terms in an exact solu-
tion, but we are only interested in obtaining a and r0 from
our T matrix. Since

ImG = − 1

8π

k√
s

(25)

we can establish the connection

8π
√
s

{[
1

G(s0)
+ β(s − s0)

]−1

− ReG(s)

}
+ ik

≈ 1

a
− 1

2
r0k

2 + ik (26)

or

8π
√
s

{[
1

G(s0)
+ β(s − s0)

]−1

− ReG(s)

}
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≈ 1

a
− 1

2
r0k

2 (27)

From Eq. (27), we obtain two equations evaluating the
expression on the left at threshold and its derivative with
respect to k2 at threshold for positive increases of s. We have

8π
√
sth

{ [
1

G(s0)
+ β(sth − s0)

]−1

− ReG(sth)

}
=1

a

(28)

and taking into account that s = (w1(k)+w2(k))2, w1(k) =√
m2

1 + k2, w2(k) =
√
m2

2 + k2,

∂

∂k2 = ∂

∂s

∂s

∂k2

= 2(w1(k) + w2(k))

(
1

2w1(k)
+ 1

2w2(k)

)
∂

∂s

= (w1(k) + w2(k))2

w1(k)w2(k)

∂

∂s
. (29)

we obtain

1

2
√
sth

8π

[ [
1

G(s0)
+ β(sth − s0)

]−1

− ReG(s)th

]
s

w1(k)w2(k)
|sth

+ 8π
√
sth

[
− β

[
1

G(s0)
+ β(sth − s0)

]−2

− ∂Re[G(s)]
∂s

|s+th
]

s

w1(k)w2(k)
|sth = −1

2
r0 (30)

From Eq. (28) we get the value of β from a, as

β = 1

sth − s0

{[
1

a

1

8π

1√
sth

+ ReG(sth)

]−1

− 1

G(s0)

}

(31)

Note that using Eqs. (19), (20), (22) we have

P2 = 1 − P1 = Z = −g2G(s0)
2β (32)

with

g2 = lim
s−s0

(s − s0)T (s)

= lim
s−s0

s − s0

[ 1
G(s0)

+ β(s − s0)]−1 − G(s)

= 1

−( 1
G(s0)

)−2β − ∂G
∂s |s0

= 1

−G(s0)2β − ∂G
∂s |s0

(33)

where we have applied L’Hospital’s rule to calculate the limit.
Equation (32) with β ≤ 0 will always guarantee that Z is
positive, as it should be (note that ∂G

∂s |s0 < 0).
Equation (31), with the knowledge of a and qmax and the

position of the pole will give the value of β and by means of
Eqs. (32), (33), we will get the value of Z , the complement of
the compositeness of the state that we study. With the value
of β obtained we can go to Eq. (30) and establish that

R0 ≡ − 1

2
√
sth

16π

[ [
1

G(s0)
+ β(sth − s0)

]−1

− ReG(sth)

]
s

w1(k)w2(k)
|sth

+ 16π
√
sth

[
β

[
1

G(s0)
+ β(sth − s0)

]−2

+ ∂Re[G(s)]
∂s

|s+th
]

s

w1(k)w2(k)
|sth = r0 (34)

where R0 is the theoretical value that our approach provides
for r0.

Given a and s0, R0 in Eq. (34) is now a function of qmax

and we can see which value of qmax we need to satisfy the
equation or how close or far we are from satisfying it. That
r0 is a measure of the range of the interaction in r -space is a
well known feature of Quantum Mechanism (see Eq. (2-42)
of Ref. [40]).

Note that we have ∂G
∂s which we evaluate numerically. For

this we evaluate Eq. (13) analytically, using the formula given
in Ref. [41].

2.3 Formalism for the nucleon nucleon interaction

We follow the steps of the former subsection but we use the
variable E instead of s (E2 = s). The G function is now
defined as

G(E) =
∫

|q|<qmax

d3q
(2π)3

m1m2

E1(q)E2(q)

× 1√
s − E1(q) − E2(q) + iε

(35)

It corresponds to Eq. (13) multiplied by 2m12m2 for reasons
of normalization of the fields and neglecting the negative
energy parts of the relativistic propagator, as appropriate for
heavy particles as the nucleons. In practice, we use the same
formula of Ref. [41] multiplied by 4m1m2.

The potential is now

V = V0 + β(E − E0) (36)

123
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Then,

T = 1

[V0 + β(E − E0)]−1 − G(E)
(37)

The pole at E0 implies

V−1
0 − G(E0) = 0, V0 = 1

G(E0)
(38)

hence,

T = 1

[ 1
G(E0)

+ β(E − E0)]−1 − G(E)

(39)

but now

Im G = − 1

8π
k

2m12m2√
s

= − 1

2π
k
m1m2

E
(40)

and equivalently to Eq. (27) we have now

2πE

m1m2

{ [
1

G(E0)
+ β(E − E0)

]−1

− ReG(E)

}

≈ 1

a
− 1

2
r0k

2 (41)

Evaluating Eq. (41) at threshold we get

2πEth

m1m2

{ [
1

G(E0)
+ β(E − E0)

]−1

− ReG(Eth)

}

= 1

a
(42)

and using E = E1(k) + E2(k), Ei (k) =
√
m2

i + k2,

∂

∂k2 = ∂

∂E

∂E

∂k2

=
(

1

2E1(k)
+ 1

2E2(k)

)
∂

∂E

= 1

2

E1 + E2

E1(k)E2(k)

∂

∂E
, (43)

from the derivative of Eq. (41) at threshold we get

2π

m1m2

[ [
1

G(E0)
+ β(Eth − E0)

]−1

− ReG(E)th

]
E

2E1(k)E2(k)
|Eth

+ 2πEth

m1m2

[
− β

[
1

G(E0)
+ β(Eth − E0)

]−2

− ∂Re[G(E)]
∂E

|E+
th

]
E

2E1(k)E2(k)
|Eth = −1

2
r0 (44)

or

R0 ≡ − 2π

m1m2

[ [
1

G(E0)
+ β(Eth − E0)

]−1

− ReG(Eth)

]
m1 + m2

m1m2

+ 2π(m1 + m2

m1m2
)

[
β

[
1

G(E0)
+ β(Eth − E0)

]−2

+ ∂Re[G(E)]
∂E

|E+
th

]
m1 + m2

m1m2
= r0 (45)

Once again we will compare R0 versus r0 as a function of
qmax. The couplings are now defined as

g2 = lim
E→E0

(E − E0)T

= lim
E→E0

E − E0[
1

G(E0)
+ β(E − E0)

]−1 − G(E)

= 1

−
[

1
G(E0)

]−2
β − ∂G(E)

∂E |E0

= 1

−G(E0)2β − ∂G(E)
∂E |E0

(46)

and

Z = 1 − X = −g2G(E0)
2β, X = −g2 ∂G(E)

∂E
|E0 (47)

The magnitude β is now evaluated from Eq. (42)

β = 1

Eth − E0

{[
1

a

1

2π

m1m2

m1 + m2
+ReG(Eth)

]−1

− 1

G(E0)

}

(48)

which determines β from a, E0 and qmax. Substituted in
Eq. (45), it allows to check R0 versus r0 as a function of
qmax.

3 Results

3.1 The deuteron case

We have the data of Eq. (6). We determine β in terms of this
input and Eq. (48) and then the value of Z of Eq. (47) as a
function of qmax and plot Z in Fig. 2

We can see in Fig. 2, that starting from qmax = 100 MeV,
Z is a small number, smaller than 0.25 indicating a strong
molecular pn component. If we go beyond qmax = 140 MeV

123
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Fig. 2 Z for the deuteron case as a function of qmax

then Z becomes negative and we should discard this situa-
tion. The comparison of the theoretical R0 versus the exper-
imental r0 value is shown in Fig. 3. There we can see that
R0 is close to r0 for values of qmax ≥ 140 MeV, but the
disagreement becomes noticeable below this value. Alto-
gether, there is a optimal situation around qmax ≈ 140 MeV,
where Z ∼ 0, indicating that the deuteron is a molecular
state and the value of R0 is very close to r0. This situa-
tion is realistic indicating that the range of the NN inter-
action in the deuteron in r -space is rather large, and hence
qmax is small. If we look at the deuteron wave function in
momentum space from the Bonn potential [42], we see that
at q = 140 MeV, the wave function is 7% the value at the
origin and 
2(q = 140 MeV) ≈ 0.006
2(0). We find then
that the optimal agreement of the theory with the a and r0

data is obtained with a value of qmax which reflects realis-
tically the actual deuteron wave function and tells us that
Z ∼ 0, hence the deuteron is mostly a pn molecule. There is
no point demanding more than this information knowing that
apart from the S−wave potential, there is also an important
tensor part in the deuteron and a non negligible D-wave part
in the wave function. As we can see, the range of the interac-
tion has been essential to obtain this acceptable picture. From
Fig. 2 we can see that if qmax increases, indicating short range
interaction in r -space, Z becomes negative and X ≈ 1.6 sim-
ilar to what one obtains with the Weinberg formula of Eq. (7),
not surprising since one implicitly is making this assumption
in the derivation of Weinberg formulas of Eqs. (1), (2) (see
Ref. [21]). Note that the consideration of the range of the
interaction has also allowed us to obtain positive values of
R0 and close to the experimental one of r0. Note also that in
Eq. (45) the first term of R0 is small and most of the contribu-
tion comes from the second term. If ∂Re[G(E)]

∂E |Eth were zero,
then R0 would be negative and proportional to Z , as found
in Eq. (2). Actually this is the situation with non relativistic
kinematics when the range qmax is set to infinity (see non
relativistic dimensional regularization results for G in Ref.

Fig. 3 Comparison of R0 and r0 for the deuteron case as a function of
qmax

[43] where ReG = const above threshold). In summary, the
consideration of the range of the interaction has rendered us
a picture of the deuteron far closer to the actual molecular
nature than Weinberg’s equations, and in return has shown
that the interaction has to be of long range in r -space, with
a realistic value of the range when compared to the actual
deuteron wave function.

4 The D∗
s0(2317)

Next we pay attention to the D∗
s0(2317) state considered as

a K D molecule. We will take the values of a, r0 and the
binding from the QCD lattice analysis of the finite volume
levels of [23] (note 1

a in [23] versus − 1
a here in Eq. (3))

a(K D) = +1.3 ± 0.5 ± 0.1 fm

r0(K D) = −0.1 ± 0.3 ± 0.1 fm (49)

and we take the nominal mass 2317 MeV for the mass of the
state.

In Fig. 4 we see that Z takes unrealistically large values
for qmax < 300 MeV. On the other hand, in Fig. 5 we plot R0

versus r0 and we see that for qmax < 300 MeV, the deviation
of R0 and r0 becomes gradually large and unacceptable. We
could say that for values of qmax > 400 MeV we already
obtain an acceptable agreement of R0 versus r0. We see then
from Fig. 4 that in this case Z < 0.4, indicating a DK molec-
ular component with probability larger than 60%. This would
be in agreement with the findings in [23] where it was found
that

P(DK ) = (72 ± 13 ± 5)% (50)

We also see that the range, with qmax ≥ 400 MeV, corre-
sponds to a shorter range in r -space than in the deuteron case.
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Fig. 4 The value of Z for K D scattering forming the D∗
s0(2317)

Fig. 5 The comparison of R0 and r0 for the D∗
s0(2317) case as a func-

tion of qmax

In the dynamical picture of [35] the interaction is driven by
vector meson exchange, contrary to the np interaction where
pion exchange plays a dominant role.

Note also from Fig. 4 that around qmax = 725 MeV Z
becomes zero and negative from there on. This also gives us
an idea of the range demanded by the data, which reflects
realistically what one can expect from light vector exchange.
From comparison recall that qmax = 630 MeV was used in
the study of the K̄ N interaction in [25].

5 The D∗
s1(2460)

Now we analyse the D∗
s1(2460) state shown to be mostly

molecular in the K D∗ channel from the analysis of the lattice
QCD levels in [23]. There it was found

a(K D∗) = +1.1 ± 0.5 ± 0.2 fm

r0(K D∗) = −0.2 ± 0.3 ± 0.1 fm (51)

Fig. 6 Z for the D∗
s1(2460) case as a function of qmax

and we take the nominal mass 2460 MeV for the state. In
Fig. 6 we show the value of Z as a function of qmax. We
have to go to values of qmax bigger than 280 MeV to have
Z smaller than 1. We can complement this information from
Fig. 7 which shows a big discrepancy of R0 with r0 for values
of qmax smaller than 400 MeV.

We can see now that Z never becomes zero, independent of
qmax, reaching a value of 0.2 for large qmax. If we take a range
ofqmax like in the former case 400 MeV < qmax < 750 MeV,
the Z range becomes 0.3 < Z < 0.6. What we can see is
that Z is now bigger than in the case of the D∗

s0(2317). The
compositeness is now around or bigger than 40% (0.4 <

X < 0.7) in agreement with the findings of [23], where one
obtains

P(K D∗) = (57 ± 21 ± 6)% (52)

In this case the ηD∗
s channel is mostly responsible for the

remaining probability. It is interesting to see that the analysis
done here renders values of Z which are in good agreement
with those found in [23].

What we have found in the three cases studied is that the
range of the interaction is very important to consider, even
in cases little bound like the deuteron. We could see that the
combined information of a, r0 and the binding could provide
a fair information on the D∗

s0(2317) and D∗
s1(2460) which are

bound by about 40 − 45 MeV. At the same time the analysis
gives us some idea about the range of the interaction, with
the NN interaction for the deuteron being of longer range in
r -space than the K D and K D∗ in the cases of the D∗

s0(2317)

and D∗
s1(2460) states. The information obtained, even with

its uncertainties, is more accurate than that obtained by the
limiting equations of (1), (2). The algorithms resulting from
our study are also easy to implement and can be used to study
other cases.
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Fig. 7 The comparison of R0 and r0 for the D∗
s1(2460) case as a func-

tion of qmax

6 Conclusion

We have used a formalism for the scattering of hadrons
using a separable potential showing explicitly the range of
the interaction. We showed the equivalence of the formal-
ism to the one used in the chiral unitary approach with the
on shell factorization of the potential. The success of this
latter approach generating low lying resonances and describ-
ing many physical process gives us confidence in the method
used in the present work. When studying the scattering of the
two hadrons sometimes a bound state appears below thresh-
old and it is logical to ask oneself whether that state corre-
sponds to a molecular state of these hadronic components,
stemming from this interaction, or it corresponds to a dif-
ferent structure. Sometimes the state could have a mixture
of another pair of hadrons, or even have a component of a
compact quark cluster. To account for all these cases we have
assumed an energy dependent potential, and our formalism
allows one to determine the scattering length and the variable
qmax, the range of the interaction in momentum space. The
formalism also allows one to obtain the effective range r0,
and not always is it possible to get agreement with experi-
ment, indicating that more information beyond the effective
range expansion would be necessary for a better analysis of
the data. Yet, the comparison of the theoretical value R0 and
r0 shows that there are regions of qmax where the disagree-
ment is too big and unacceptable. Looking at the regions of
qmax where R0 is closer to r0 one can find a double infor-
mation, which is the range of the interaction and the value
of the Z , or the molecular compositeness X = 1 − Z . The
combined analysis using the information of the binding, a
and r0 renders us reasonable values of Z and the range of
the interaction for the three systems studied, with very dif-
ferent binding energy: the deuteron with 2.22 MeV binding
and the D∗

s0(2317) and D∗
s1(2460) states with binding around

40 − 45 MeV. The information obtained with this method

is more accurate than that obtained from the formalism of
Weinberg, derived in the limit of very small binding and zero
range of the interaction in r -space.

At this point it is worth going back to the assumptions
made and how one could improve on what has been done
here. First, let us state clearly that we do not get a precise
value of Z and the range of the interaction from the values of
a and r0. We obtain qualitatively a band of values for the Z
and qmax, yet a very valuable information. If one wished to go
further on what we have done, one could try to see if different
result come with another formalism which does not involve
a separable potential, although, for the reasons discussed,
the approach looks very reliable. Eventually one could try to
have a potential which is not linear in s as we have assumed
here, for which we provided information suggesting that it
is quite a good assumption. Obviously, following these steps
one would introduce more free parameters. The idea here is
to see how much one can learn from a and r0 alone and we
had two free parameters, qmax and β to match to a and r0.
Our believe is, indeed, that if one wishes to learn more about
Z and qmax, one would have to use more data on scattering,
or other processes, that allow one to go beyond the effective
range expansion. This is certainly a commendable task. Yet,
the point here was to see how much one can learn from a and
r0 alone, and we showed that one can get some qualitative
knowledge about the values of Z that are more accurate than
the values provided by the standard Weinberg formalism, and
at the same time one gets an additional information on the
range of the interaction.
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