Skip to main content
Log in

Measurement of alpha-induced reaction cross-sections on \(^{nat}\)Mo with detailed covariance analysis

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present study we have measured the excitation functions for the nuclear reactions \(^{nat}\)Mo(\(\alpha \),x)\(^{103}\)Ru, \(^{nat}\)Mo(\(\alpha \),x)\(^{97}\)Ru, \(^{nat}\)Mo(\(\alpha \),x)\(^{95}\)Ru, \(^{nat}\)Mo(\(\alpha \),x)\(^{96g}\)Tc, \(^{nat}\)Mo(\(\alpha \),x)\(^{95g}\)Tc and \(^{nat}\)Mo(\(\alpha \),x)\(^{94g}\)Tc in the energy range 9–32 MeV. We have used the stacked foil activation technique followed by the offline gamma-ray spectroscopy technique to measure the excitation functions. In this study we have also documented detailed uncertainty analysis for these nuclear reactions and their corresponding covariance matrix are also presented. The excitation functions are compared with the available experimental data from EXFOR data library and the theoretical prediction from TALYS nuclear reaction code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The manuscript has associated data in a data repository. [Authors’ comment: All the data generated during this study are contained in this article.]

References

  1. M.S. Qaim, I. Spahn, B. Scholten, B. Neumaier, Radiochimica Acta 104(9), 601–624 (2016)

    Article  Google Scholar 

  2. M.S. Uddin, A. Hermanne, S. Sudar, M.N. Aslam, B. Scholten, H.H. Coenen, S.M. Qaim, Appl. Radiat. Isotopes 69, 699 (2011)

    Article  Google Scholar 

  3. B. Mukhopadhyay, K. Mukhopadhyay, J. Nucl. Med. Radiat. Ther. 2(2), 1000115 (2011)

    Article  Google Scholar 

  4. A.A. Alharbi, et al., in Radioisotopes-Applications in Bio-Medical Science. IntechOpen (2011)

  5. M. Sitarz, E. Nigron, A. Guertin, F. Haddad, T. Matulewicz, Instruments 3(1), 7 (2019)

    Article  Google Scholar 

  6. B. Bartos, E. Kowalska, A. Bilewicz, G. Skarnemark, J. Radioanal. Nucl. Chem. 279(2), 655–657 (2009)

    Article  Google Scholar 

  7. W. Rapp, I. Dillmann, F. Kappeler, U. Giesen, H. Klein, T. Rauscher, D. Hentschel, S. Hilpp, Phys. Rev. C 78(2), 025804 (2008)

    Article  ADS  Google Scholar 

  8. T.N. Szegedi, G.G. Kiss, P. Mohr, A. Psaltis, M. Jacobi, G.G. Barnafoldi, T. Szucs, G. Gyurky, A. Arcones, Phys. Rev. C 104(3), 035804 (2021)

    Article  ADS  Google Scholar 

  9. A. Gandhi, A. Sharma, A. Kumar, R. Pachuau, B. Lalremruata, S.V. Suryanarayana, L.S. Danu, T. Patel, S. Bishnoi, B.K. Nayak, Phys. Rev. C 102, 014603 (2020)

    Article  ADS  Google Scholar 

  10. A. Gandhi et al., Eur. Phys. J. A 57, 1 (2021)

    Article  ADS  Google Scholar 

  11. A. Gandhi et al., Chin. Phys. C 46(1), 014002 (2022)

    Article  ADS  Google Scholar 

  12. A. Gandhi et al., Eur. Phys. J. Plus 136(8), 1–17 (2021)

    Article  ADS  Google Scholar 

  13. N. Otuka et al., Nucl. Data Sheets 120, 272 (2014)

    Article  ADS  Google Scholar 

  14. IAEA-EXFOR Experimental nuclear reaction database. https://www-nds.iaea.org/exfor. Retrieved Dec 2021

  15. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  16. A.J. Koning, S. Hilaire, M.C. Duijvestijn, in TALYS-1.0, Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22–27, 2007, Nice, France, vol. 211, ed. by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray, EDP Sciences (2008)

  17. M.S. Uddin, K.S. Kim, M. Nadeem, S. Sudar, G.N. Kim, Eur. Phys. J. A 53(5), 1–10 (2017)

    Article  Google Scholar 

  18. S. Takacs, M.P. Takacs, A. Hermanne, F. Tarkanyi, R.A. Rebeles, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 297, 44–57 (2013)

    Article  ADS  Google Scholar 

  19. S. Takacs, M.P. Takacs, A. Hermanne, F. Tarkanyi, R.A. Rebeles, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 278, 93–105 (2012)

  20. T. Siiskonen, J. Huikari, T. Haavisto, J. Bergman, S.J. Heselius, J.O. Lill, T. Lonnroth, K. Perajarvi, Appl. Radiat. Isot. 67(11), 2037–2039 (2009)

    Article  Google Scholar 

  21. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268(11–12), 1818–1823 (2010)

  22. P. Sigmund, S. Andreas, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 410, 78–87 (2017)

    Article  ADS  Google Scholar 

  23. M. Aikawa, M. Saito, S. Ebata, Y. Komori, H. Haba, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 427, 91–94 (2018)

    Article  ADS  Google Scholar 

  24. L.R.M. Punte, B. Lalremruata, N. Otuka, S.V. Suryanarayana, Y. Iwamoto, R. Pachuau, B. Satheesh, H.H. Thanga, L.S. Danu, V.V. Desai, L.R. Hlondo, S. Kailas, S. Ganesan, B.K. Nayak, A. Saxena, Phys. Rev. C 95, 024619 (2017)

    Article  ADS  Google Scholar 

  25. H. Rameback et al., J. Radioanal. Nucl. Chem. 304(1), 467–471 (2015)

    Article  Google Scholar 

  26. T. Vidmar, G. Kanisch, G. Vidmar, App. Radiat. Isot. 908, 69 (2011)

    Google Scholar 

  27. R. Pachuau et al., Nucl. Phys. A 992, 121613 (2019)

    Article  Google Scholar 

  28. N. Otuka et al., Radiat. Phys. Chem. 140, 502–510 (2017)

    Article  ADS  Google Scholar 

  29. D.L. Smith, N. Otuka, Nucl. Data Sheets 113(12), 3006–3053 (2012)

    Article  ADS  Google Scholar 

  30. B. Lawriniang et al., J. Radioanal. Nucl. Chem. 319(3), 695–701 (2019)

    Article  Google Scholar 

  31. M. Sekerci, Radiochimica Acta 108(6), 459–467 (2020)

    Article  MathSciNet  Google Scholar 

  32. A. Koning, S. Hilaire, S. Goriely, Global and local level density models. Nucl. Phys. A 810, 13 (2008)

    Article  ADS  Google Scholar 

  33. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C 78, 064307 (2008)

    Article  ADS  Google Scholar 

  34. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  35. W. Dilg, W. Schantl, H. Vonach, M. Uhl, Nucl. Phys. A 217, 269 (1973)

    Article  ADS  Google Scholar 

  36. A.V. Ignatyuk, J.L. Weil, S. Raman, S. Kahane, Phys. Rev. C 47, 1504 (1993)

    Article  ADS  Google Scholar 

  37. S. Goriely, F. Tondeur, J.M. Pearson, A Hartree-Fock nuclear mass table. At. Data Nucl. Data Tables 77, 311 (2001)

    Article  ADS  Google Scholar 

  38. S. Hilaire, M. Girod, S. Goriely, A.J. Koning, Phys. Rev. C 86, 064317 (2012)

    Article  ADS  Google Scholar 

  39. A. Hermanne et al., Nucl. Data Sheets 148, 338–382 (2018)

    Article  ADS  Google Scholar 

  40. F. Tarkanyi, A. Hermanne, F. Ditroi, S. Takacs, A. Ignatyuk, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 399, 83–100 (2017)

    Article  ADS  Google Scholar 

  41. F. Ditroi, A. Hermanne, F. Tarkanyi, S. Takacs, A.V. Ignatyuk, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 285, 125–141 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author (Mahesh Choudhary) gratefully thanks to the Council of Scientific and Industrial Research (CSIR), Government of India, for financial support in the form of Senior Research Fellowship. (File No 09/013(882)/2019-EMR-1). Also, one of the authors (A. Kumar) would like to thank the SERB, DST, Government of India [Grant No. CRG/2019/000360], and Institutions of Eminence (IoE) BHU [Grant No. 6031]. We acknowledge the kind support provided by Prof. A. K. Tyagi, Director, Chemistry Group, BARC, Mumbai and Prof. Chandana Bhattacharya, Head, Experimental Nuclear Physics Division, VECC, Kolkata towards the successful execution of the experiment. We would also like to thank the Cyclotron (K-130) staff, VECC, Kolkata for providing us high quality of the beam during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Choudhary.

Additional information

Communicated by Robert Janssens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, M., Gandhi, A., Sharma, A. et al. Measurement of alpha-induced reaction cross-sections on \(^{nat}\)Mo with detailed covariance analysis. Eur. Phys. J. A 58, 95 (2022). https://doi.org/10.1140/epja/s10050-022-00741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00741-7

Navigation