Skip to main content
Log in

Multinucleon transfer as a method for production of new heavy neutron-enriched isotopes of transuranium elements

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The multinucleon transfer reactions with actinides were analyzed in this work as a method of production of heavy neutron-enriched nuclei within a dynamical approach based on Langevin equations. Special interest is paid to production yields of neutron-enriched nuclei with closed neutron shell \(N=126\) and in the region of transuranium elements. Issues of an optimal combination of colliding nuclei and reaction energy are mainly considered. According to the calculations, heavier projectile bombarding actinide target leads to larger production cross sections of neutron-enriched isotopes of transuranium elements. Moreover, their yields weakly depend on the collision energy. At the same time yields of products heavier than the target decrease as the collision energy goes up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All necessary and discussed data are provided in the paper. Additional data are available from the authors upon reasonable request.]

References

  1. V.V. Volkov, Phys. Rep. 44(2), 93 (1978). https://doi.org/10.1016/0370-1573(78)90200-4

    Article  ADS  Google Scholar 

  2. A.G. Artukh, V.V. Avdeichikov, G.F. Gridnev, V.L. Mikheev, V.V. Volkov, J. Wilczynski, Nucl. Phys. A 176(2), 284 (1971). https://doi.org/10.1016/0375-9474(71)90270-3

    Article  ADS  Google Scholar 

  3. K.J. Moody, W. Bruchle, M. Brugger, H. Gaggeler, B. Haefner, M. Schadel, K. Summerer, H. Tetzlaff, G. Herrmann, N. Kaffrell, J.V. Kratz, J. Rogowski, N. Trautmann, M. Skalberg, G. Skarnemark, J. Alstad, M.M. Fowler, Zeitschrift für Physik A Hadrons and nuclei 328(4), 417 (1987). https://doi.org/10.1007/BF01289627

    Article  ADS  Google Scholar 

  4. E.M. Kozulin, E. Vardaci, G.N. Knyazheva, A.A. Bogachev, S.N. Dmitriev, I.M. Itkis, M.G. Itkis, A.G. Knyazev, T.A. Loktev, K.V. Novikov, E.A. Razinkov, O.V. Rudakov, S.V. Smirnov, W. Trzaska, V.I. Zagrebaev, Phys. Rev. C 86, 044611 (2012). https://doi.org/10.1103/PhysRevC.86.044611

    Article  ADS  Google Scholar 

  5. J.S. Barrett, W. Loveland, R. Yanez, S. Zhu, A.D. Ayangeakaa, M.P. Carpenter, J.P. Greene, R.V.F. Janssens, T. Lauritsen, E.A. McCutchan, A.A. Sonzogni, C.J. Chiara, J.L. Harker, W.B. Walters, Phys. Rev. C 91, 064615 (2015). https://doi.org/10.1103/PhysRevC.91.064615

    Article  ADS  Google Scholar 

  6. Y.X. Watanabe, Y.H. Kim, S.C. Jeong, Y. Hirayama, N. Imai, H. Ishiyama, H.S. Jung, H. Miyatake, S. Choi, J.S. Song, E. Clement, G. de France, A. Navin, M. Rejmund, C. Schmitt, G. Pollarolo, L. Corradi, E. Fioretto, D. Montanari, M. Niikura, D. Suzuki, H. Nishibata, J. Takatsu, Phys. Rev. Lett. 115, 172503 (2015). https://doi.org/10.1103/PhysRevLett.115.172503

    Article  ADS  Google Scholar 

  7. E.M. Kozulin, V.I. Zagrebaev, G.N. Knyazheva, I.M. Itkis, K.V. Novikov, M.G. Itkis, S.N. Dmitriev, I.M. Harca, A.E. Bondarchenko, A.V. Karpov, V.V. Saiko, E. Vardaci, Phys. Rev. C 96, 064621 (2017). https://doi.org/10.1103/PhysRevC.96.064621

    Article  ADS  Google Scholar 

  8. V. Zagrebaev, W. Greiner, J. Phys. G Nucl. Part. Phys. 31(7), 825 (2005)

    Article  ADS  Google Scholar 

  9. V. Zagrebaev, W. Greiner, J. Phys. G Nucl. Part. Phys. 34(11), 2265 (2007)

    Article  ADS  Google Scholar 

  10. V.I. Zagrebaev, W. Greiner, Phys. Rev. C 83, 044618 (2011). https://doi.org/10.1103/PhysRevC.83.044618

    Article  ADS  Google Scholar 

  11. A.V. Karpov, V.V. Saiko, Phys. Rev. C 96, 024618 (2017). https://doi.org/10.1103/PhysRevC.96.024618

    Article  ADS  Google Scholar 

  12. V.V. Saiko, A.V. Karpov, Phys. Rev. C 99, 014613 (2019). https://doi.org/10.1103/PhysRevC.99.014613

    Article  ADS  Google Scholar 

  13. V. Saiko, A. Karpov, Acta Physica Polonica B 49, 307 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. V. Saiko, A. Karpov, Acta Physica Polonica B 50, 495 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. V.V. Saiko, A.V. Karpov, Phys. Part. Nucl. Lett. 16, 667 (2019). https://doi.org/10.1134/S1547477119060475

    Article  Google Scholar 

  16. Y. Abe, S. Ayik, P.G. Reinhard, E. Suraud, Phys. Rep. 275(2), 49 (1996). https://doi.org/10.1016/0370-1573(96)00003-8

    Article  ADS  MathSciNet  Google Scholar 

  17. P. Fröbrich, I.I. Gontchar, Phys. Rep. 292(3), 131 (1998). https://doi.org/10.1016/S0370-1573(97)00042-2

    Article  ADS  Google Scholar 

  18. A.V. Karpov, P.N. Nadtochy, D.V. Vanin, G.D. Adeev, Phys. Rev. C 63, 054610 (2001). https://doi.org/10.1103/PhysRevC.63.054610

    Article  ADS  Google Scholar 

  19. Y. Aritomo, M. Ohta, Nucl. Phys. A 744(Supplement C), 3 (2004). https://doi.org/10.1016/j.nuclphysa.2004.08.009

  20. A.J. Sierk, Phys. Rev. C 96, 034603 (2017). https://doi.org/10.1103/PhysRevC.96.034603

    Article  ADS  Google Scholar 

  21. G.D. Adeev, A.V. Karpov, P.N. Nadtochy, D.V. Vanin, Phys. Part. Nucl. 36(4), 378 (2005)

    Google Scholar 

  22. I. Gontchar, Phys. Elem. Part. Atom. Nucl. 26(4), 932 (1995)

    Google Scholar 

  23. V. Zagrebaev, A. Karpov, Y. Aritomo, M. Naumenko, W. Greiner, Phys. Part. Nucl. 38(4), 469 (2007). https://doi.org/10.1134/S106377960704003X

    Article  Google Scholar 

  24. J. Maruhn, W. Greiner, Zeitschrift für Physik 251(5), 431 (1972). https://doi.org/10.1007/BF01391737

    Article  ADS  Google Scholar 

  25. K.T.R. Davies, A.J. Sierk, J.R. Nix, Phys. Rev. C 13, 2385 (1976). https://doi.org/10.1103/PhysRevC.13.2385

    Article  ADS  Google Scholar 

  26. J. Blocki, Y. Boneh, J.R. Nix, J. Randrup, M. Robel, A.J. Sierk, W.J. Swiatecki, Ann. Phys. 113(2), 330 (1978). https://doi.org/10.1016/0003-4916(78)90208-7

    Article  ADS  Google Scholar 

  27. A.J. Sierk, J.R. Nix, Phys. Rev. C 21, 982 (1980). https://doi.org/10.1103/PhysRevC.21.982

    Article  ADS  Google Scholar 

  28. A.V. Karpov, G.D. Adeev, Eur. Phys. J. A 14(2), 169 (2002). https://doi.org/10.1140/epja/i2002-10004-2

    Article  ADS  Google Scholar 

  29. W. von Oertzen, H.G. Bohlen, B. Gebauer, R. Künkel, F. Pühlhofer, D. Scühll, Zeitschrift für Physik A Atomic Nuclei 326(4), 463 (1987). https://doi.org/10.1007/BF01289551

    Article  ADS  Google Scholar 

  30. Vyacheslav Saiko, Karpov, Alexander. EPJ Web Conf. 223, 01055 (2019). https://doi.org/10.1051/epjconf/201922301055

    Article  Google Scholar 

  31. A.V. Karpov, A.S. Denikin, A.P. Alekseev, V.I. Zagrebaev, V.A. Rachkov, M.A. Naumenko, V.V. Saiko, Phys. At. Nucl. 79(5), 749 (2016). https://doi.org/10.1134/S1063778816040141

    Article  Google Scholar 

  32. K.H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131(Supplement C), 107 (2016). https://doi.org/10.1016/j.nds.2015.12.009(Special Issue on Nuclear Reaction Data)

  33. A.V. Karpov, V.A. Rachkov, V.V. Saiko, Phys. Part. Nuclei Lett. 15, 247–256 (2018). https://doi.org/10.1134/S1547477118030093

  34. C. Golabek, S. Heinz, W. Mittig, F. Rejmund, A.C.C. Villari, S. Bhattacharyva, D. Boilley, G. De France, A. Drouart, L. Gaudefroy, L. Giot, V. Maslov, M. Morjean, G. Mukherjee, Y. Penionzkevich, P. Roussel-Chomaz, C. Stodel, Eur. Phys. J. A 43(3), 251 (2010). https://doi.org/10.1140/epja/i2010-10911-5

    Article  ADS  Google Scholar 

  35. M. Schädel, J.V. Kratz, H. Ahrens, W. Brüchle, G. Franz, H. Gäggeler, I. Warnecke, G. Wirth, G. Herrmann, N. Trautmann, M. Weis, Phys. Rev. Lett. 41, 469 (1978). https://doi.org/10.1103/PhysRevLett.41.469

    Article  ADS  Google Scholar 

  36. M. Schädel, W. Brüchle, H. Gäggeler, J.V. Kratz, K. Sümmerer, G. Wirth, G. Herrmann, R. Stakemann, G. Tittel, N. Trautmann, J.M. Nitschke, E.K. Hulet, R.W. Lougheed, R.L. Hahn, R.L. Ferguson, Phys. Rev. Lett. 48, 852 (1982). https://doi.org/10.1103/PhysRevLett.48.852

    Article  ADS  Google Scholar 

  37. L. Zhu, J. Su, P.W. Wen, C.C. Guo, C. Li, Phys. Rev. C 98, 034609 (2018). https://doi.org/10.1103/PhysRevC.98.034609

    Article  ADS  Google Scholar 

  38. J.V. Kratz, M. Schädel, H.W. Gäggeler, Phys. Rev. C 88, 054615 (2013). https://doi.org/10.1103/PhysRevC.88.054615

    Article  ADS  Google Scholar 

  39. D.C. Hoffman, M.M. Fowler, W.R. Daniels, H.R. von Gunten, D. Lee, K.J. Moody, K. Gregorich, R. Welch, G.T. Seaborg, W. Brüchle, M. Brügger, H. Gaggeler, M. Schadel, K. Sümmerer, G. Wirth, T. Blaich, G. Herrmann, N. Hildebrand, J.V. Kratz, M. Lerch, N. Trautmann, Phys. Rev. C 31, 1763 (1985). https://doi.org/10.1103/PhysRevC.31.1763

    Article  ADS  Google Scholar 

  40. K.J. Moody, D. Lee, R.B. Welch, K.E. Gregorich, G.T. Seaborg, R.W. Lougheed, E.K. Hulet, Phys. Rev. C 33, 1315 (1986). https://doi.org/10.1103/PhysRevC.33.1315

    Article  ADS  Google Scholar 

  41. J.D. Leyba, R.A. Henderson, H.L. Hall, C.M. Gannett, R.B. Chadwick, K.R. Czerwinski, B.A. Kadkhodayan, S.A. Kreek, G.R. Haynes, K.E. Gregorich, D.M. Lee, M.J. Nurmia, D.C. Hoffman, Phys. Rev. C 41, 2092 (1990). https://doi.org/10.1103/PhysRevC.41.2092

    Article  ADS  Google Scholar 

  42. W. Krolas, R. Broda, B. Fornal, T. Pawlat, J. Wrzesinski, D. Bazzacco, G. de Angelis, S. Lunardi, R. Menegazzo, D. Napoli, C.R. Alvarez, Nucl. Phys. A 832(3), 170 (2010). https://doi.org/10.1016/j.nuclphysa.2009.10.159

  43. R.T. de Souza, W.U. Schröder, J.R. Huizenga, J. Tke, S.S. Datta, J.L. Wile, Phys. Rev. C 39, 114 (1989). https://doi.org/10.1103/PhysRevC.39.114

    Article  ADS  Google Scholar 

  44. W.W. Wilcke, J.R. Birkelund, A.D. Hoover, J.R. Huizenga, W.U. Schröder, V.E. Viola, K.L. Wolf, A.C. Mignerey, Phys. Rev. C 22, 128 (1980). https://doi.org/10.1103/PhysRevC.22.128

    Article  ADS  Google Scholar 

  45. T. Tanabe, R. Bock, M. Dakowski, A. Gobbi, H. Sann, H. Stelzer, U. Lynen, A. Olmi, D. Pelte, Nucl. Phys. A 342(1), 194 (1980). https://doi.org/10.1016/0375-9474(80)90514-X

    Article  ADS  Google Scholar 

  46. K.D. Hildenbrand, H. Freiesleben, F. Pühlhofer, W.F.W. Schneider, R. Bock, D.V. Harrach, H.J. Specht, Phys. Rev. Lett. 39, 1065 (1977). https://doi.org/10.1103/PhysRevLett.39.1065

  47. Y.T. Oganessian, V.K. Utyonkoy, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Y.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K. Subotic, V.I. Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Kenneally, R.W. Lougheed, Phys. Rev. C 69, 021601 (2004). https://doi.org/10.1103/PhysRevC.69.021601

    Article  ADS  Google Scholar 

  48. C.E. Dullmann, W. Bruchle, R. Dressler, K. Eberhardt, B. Eichler, R. Eichler, H.W. Gaggeler, T.N. Ginter, F. Glaus, K.E. Gregorich, D.C. Hoffman, E. Jager, D.T. Jost, U.W. Kirbach, D.M. Lee, H. Nitsche, J.B. Patin, V. Pershina, D. Piguet, Z. Qin, M. Schadel, B. Schausten, E. Schimpf, H.J. Schott, S. Soverna, R. Sudowe, P. Thorle, S.N. Timokhin, N. Trautmann, A. Turler, A. Vahle, G. Wirth, A.B. Yakushev, P.M. Zielinski, Nature 418, 859 (2002). https://doi.org/10.1038/nature00980

    Article  ADS  Google Scholar 

  49. M. Wang, G. Audi, A.H. Wapstra, F. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partly supported by the RSF Grant No. 19-42-02014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Karpov.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saiko, V., Karpov, A. Multinucleon transfer as a method for production of new heavy neutron-enriched isotopes of transuranium elements. Eur. Phys. J. A 58, 41 (2022). https://doi.org/10.1140/epja/s10050-022-00688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00688-9

Navigation