Skip to main content
Log in

\(N^*\) states with hidden charm and a three-body nature

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work we study the formation of \(N^*\)’s as a consequence of the dynamics involved in the \(ND{\bar{D}}^*-N{\bar{D}} D^*\) system when the \(D{\bar{D}}^*-{\bar{D}} D^*\) subsystem generates X(3872) in isospin 0 and \(Z_c(3900)\) in isospin 1. States with isospin \(I=1/2\) and mass in the energy region \(4400-4600\) MeV are found to arise with spin-parity \(J^P=1/2^+\) and \(3/2^+\), thus leading to predictions of the existence of \(N^*\) resonances with hidden charm and a three-body nature. We also discuss the possibility of the existence of \(\varDelta _c\) states, i.e., \(\varDelta \)’s with hidden charm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no external data associated with the manuscript.]

Notes

  1. See also Refs. [8, 9] for a possible theoretical explanation of the signal observed by the LEPS collaboration for \(\varTheta ^+(1540)\).

References

  1. R. Aaij et al., Observation of \(J/\psi p\) resonances consistent with pentaquark states in \({\varLambda }_b^0 \rightarrow J/\psi K^- p\) decays. Phys. Rev. Lett. 115, 072001 (2015)

    Article  ADS  Google Scholar 

  2. R. Aaij et al., Model-independent evidence for \(J/\psi p\) contributions to \({\varLambda }_b^0\rightarrow J/\psi p K^-\) decays. Phys. Rev. Lett. 117(8), 082002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Aaij et al., Observation of a narrow pentaquark state, \(P_c(4312)^+\), and of two-peak structure of the \(P_c(4450)^+\). Phys. Rev. Lett. 122(22), 222001 (2019)

    Article  ADS  Google Scholar 

  4. M. Battaglieri et al., Search for \({\varTheta }^+(1540)\) pentaquark in high statistics measurement of \(\gamma p \rightarrow {\bar{K}}^0 K^+ n\) at CLAS. Phys. Rev. Lett. 96, 042001 (2006)

    Article  ADS  Google Scholar 

  5. K. Miwa et al., Search for \({\varTheta }^+\) via \(\pi ^- p \rightarrow K^- X\) reaction near production threshold. Phys. Lett. B 635, 72–79 (2006)

    Article  ADS  Google Scholar 

  6. M. Moritsu et al., High-resolution search for the \({\varTheta }^{+}\) pentaquark via a pion-induced reaction at J-PARC. Phys. Rev. C 90(3), 035205 (2014)

    Article  ADS  Google Scholar 

  7. C.P. Shen et al., First observation of \(\gamma \gamma \rightarrow p \bar{p} K^+ K^-\) and search for exotic baryons in \(pK\) systems. Phys. Rev. D 93(11), 112017 (2016)

    Article  ADS  Google Scholar 

  8. A. Martinez Torres, E. Oset, Study of the \(\gamma d\rightarrow K^{+}K^{-}np\) reaction and an alternative explanation for the ‘\({\varTheta }^{+}(1540)\) pentaquark’ peak. Phys. Rev. C 81, 055202 (2010)

    ADS  Google Scholar 

  9. A. Martinez-Torres, E. Oset, A novel interpretation of the ‘\({\varTheta }^{+}(1540)\) pentaquark’ peak. Phys. Rev. Lett. 105, 092001 (2010)

    ADS  Google Scholar 

  10. M. Wang, Recent results on exotic hadrons at lhcb (2020) Presented on behalf of the lhcb collaboration at implications workshop (2020)

  11. L. Maiani, A.D. Polosa, V. Riquer, The new pentaquarks in the Diquark model. Phys. Lett. B 749, 289–291 (2015)

    Article  ADS  Google Scholar 

  12. R.F. Lebed, The pentaquark candidates in the dynamical diquark picture. Phys. Lett. B 749, 454–457 (2015)

    Article  ADS  Google Scholar 

  13. R. Ghosh, A. Bhattacharya, B. Chakrabarti, A study on P\(_{c}^{*}\) (4380) and P\(_{c}^{*}\) in the quasi particle diquark model. 2015. Phys. Part. Nucl. Lett. 14(4), 550 (2017)

    Article  Google Scholar 

  14. Xin-Zhen. Weng, Xiao-Lin. Chen, Wei-Zhen. Deng, Shi-Lin. Zhu, Hidden-charm pentaquarks and \(P_c\) states. Phys. Rev. D 100(1), 016014 (2019)

    Article  ADS  Google Scholar 

  15. Z.-G. Wang, Analysis of the \(P_c(4312)\), \(P_c(4440)\), \(P_c(4457)\) and related hidden-charm pentaquark states with QCD sum rules. Int. J. Mod. Phys. A 35(01), 2050003 (2020)

    Article  ADS  Google Scholar 

  16. L. Roca, J. Nieves, E. Oset, LHCb pentaquark as a \(\bar{D}^*{\varSigma }_c-\bar{D}^*{\varSigma }_c^*\) molecular state. Phys. Rev. D 92(9), 094003 (2015)

    Article  ADS  Google Scholar 

  17. C.W. Xiao, J. Nieves, E. Oset, Heavy quark spin symmetric molecular states from \({\bar{D}}^{(*)}{\varSigma }_c^{(*)}\) and other coupled channels in the light of the recent LHCb pentaquarks. Phys. Rev. D 100(1), 014021 (2019)

    Article  ADS  Google Scholar 

  18. M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. Sánchez Sánchez, L.-S. Geng, A. Hosaka, M.P. Valderrama, Emergence of a complete heavy-quark spin symmetry multiplet: seven molecular pentaquarks in light of the latest LHCb analysis. Phys. Rev. Lett. 122(24), 242001 (2019)

    Article  ADS  Google Scholar 

  19. T.J. Burns, E.S. Swanson, Molecular interpretation of the \(P_c\)(4440) and \(P_c\)(4457) states. Phys. Rev. D 100(11), 114033 (2019)

    Article  ADS  Google Scholar 

  20. J. He, Study of \(P_c(4457)\), \(P_c(4440)\), and \(P_c(4312)\) in a quasipotential Bethe–Salpeter equation approach. Eur. Phys. J. C 79(5), 393 (2019)

    Article  ADS  Google Scholar 

  21. C.-J. Xiao, Y. Huang, Y.-B. Dong, L.-S. Geng, D.-Y. Chen, Exploring the molecular scenario of Pc(4312), Pc(4440), and Pc(4457). Phys. Rev. D 100(1), 014022 (2019)

    Article  ADS  Google Scholar 

  22. Z.-H. Guo, J.A. Oller, Anatomy of the newly observed hidden-charm pentaquark states: \(P_c(4312)\), \(P_c(4440)\) and \(P_c(4457)\). Phys. Lett. B 793, 144–149 (2019)

    Article  ADS  Google Scholar 

  23. D. Meng-Lin, V. Baru, F.-K. Guo, C. Hanhart, U.-G. Meißner, J.A. Oller, Q. Wang, Interpretation of the LHCb \(P_c\) states as hadronic molecules and hints of a narrow \(P_c(4380)\). Phys. Rev. Lett. 124(7), 072001 (2020)

    ADS  Google Scholar 

  24. X. Hao, Q. Li, C.-H. Chang, G.-L. Wang, Recently observed \(P_c\) as molecular states and possible mixture of \(P_c(4457)\). Phys. Rev. D 101(5), 054037 (2020)

    ADS  Google Scholar 

  25. F.-K. Guo, U.-G. Meißner, W. Wang, Z. Yang, How to reveal the exotic nature of the P\(_c\)(4450). Phys. Rev. 92(7), 071502 (2015)

    Google Scholar 

  26. X.-H. Liu, Q. Wang, Q. Zhao, Understanding the newly observed heavy pentaquark candidates. Phys. Lett. B 757, 231–236 (2016)

    Article  ADS  Google Scholar 

  27. S.X. Nakamura. \(P_c(4312)^+\), \(P_c(4380)^+\), and \(P_c(4457)^+\) as double triangle cusps (2021)

  28. C. Fernández-Ramírez, A. Pilloni, M. Albaladejo, A. Jackura, V. Mathieu, M. Mikhasenko, J.A. Silva-Castro, A.P. Szczepaniak, Interpretation of the LHCb \(P_c\)(4312)\(^+\) signal. Phys. Rev. Lett. 123(9), 092001 (2019)

    Article  ADS  Google Scholar 

  29. E. Braaten, M. Kusunoki, Low-energy universality and the new charmonium resonance at 3870-MeV. Phys. Rev. D 69, 074005 (2004)

    Article  ADS  Google Scholar 

  30. M.T. AlFiky, F. Gabbiani, A.A. Petrov, X(3872): hadronic molecules in effective field theory. Phys. Lett. B 640, 238–245 (2006)

    Article  ADS  Google Scholar 

  31. D. Gamermann, E. Oset, Axial resonances in the open and hidden charm sectors. Eur. Phys. J. A 33, 119–131 (2007)

    Article  ADS  Google Scholar 

  32. D. Gamermann, C. Garcia-Recio, J. Nieves, L.L. Salcedo, L. Tolos, Exotic dynamically generated baryons with negative charm quantum number. Phys. Rev. D 81, 094016 (2010)

    Article  ADS  Google Scholar 

  33. F. Aceti, M. Bayar, E. Oset, A. Martinez-Torres, K.P. Khemchandani, J.M. Dias, F.S. Navarra, M. Nielsen, Prediction of an \(I=1\)\(D {\bar{D}}^*\) state and relationship to the claimed \(Z_c(3900)\), \(Z_c(3885)\). Phys. Rev. D 90(1), 016003 (2014)

    Article  ADS  Google Scholar 

  34. P.G. Ortega, J. Segovia, D.R. Entem, F. Fernández, The \(Z_c\) structures in a coupled-channels model. Eur. Phys. J. C 79(1), 78 (2019)

    Article  ADS  Google Scholar 

  35. J. He, D.-Y. Chen, \(Z_c(3900)/Z_c(3885)\) as a virtual state from \(\pi J/\psi -\bar{D}^*D\) interaction. Eur. Phys. J. C 78(2), 94 (2018)

    Article  ADS  Google Scholar 

  36. J. Hofmann, M.F.M. Lutz, Coupled-channel study of crypto-exotic baryons with charm. Nucl. Phys. A 763, 90–139 (2005)

    Article  ADS  Google Scholar 

  37. T. Mizutani, A. Ramos, D mesons in nuclear matter: a DN coupled-channel equations approach. Phys. Rev. C 74, 065201 (2006)

    Article  ADS  Google Scholar 

  38. C. Garcia-Recio, V.K. Magas, T. Mizutani, J. Nieves, A. Ramos, L.L. Salcedo, L. Tolos, The s-wave charmed baryon resonances from a coupled-channel approach with heavy quark symmetry. Phys. Rev. D 79, 054004 (2009)

    Article  ADS  Google Scholar 

  39. O. Romanets, L. Tolos, C. Garcia-Recio, J. Nieves, L.L. Salcedo, R.G.E. Timmermans, Charmed and strange baryon resonances with heavy-quark spin symmetry. Phys. Rev. D 85, 114032 (2012)

    Article  ADS  Google Scholar 

  40. W.H. Liang, T. Uchino, C.W. Xiao, E. Oset, Baryon states with open charm in the extended local hidden gauge approach. Eur. Phys. J. A 51(2), 16 (2015)

    Article  ADS  Google Scholar 

  41. J. Nieves, R. Pavao, Nature of the lowest-lying odd parity charmed baryon \({\varLambda }_c(2595)\) and \({\varLambda }_c(2625)\) resonances. Phys. Rev. D 101(1), 014018 (2020)

    Article  ADS  Google Scholar 

  42. L.L. Foldy, The multiple scattering of waves. 1. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67, 107–119 (1945)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. K.A. Brueckner, Multiple scattering corrections to the impulse approximation in the two-body system. Phys. Rev. 89, 834–838 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. A. Deloff, Eta d and K-d zero energy scattering: a Faddeev approach. Phys. Rev. C 61, 024004 (2000)

    Article  ADS  Google Scholar 

  45. A. Martinez Torres, K.P. Khemchandani, L. Roca, E. Oset, Few-body systems consisting of mesons. Few Body Syst. 61(4), 35 (2020)

    Article  ADS  Google Scholar 

  46. A. Martinez Torres, E.J. Garzon, E. Oset, L.R. Dai, Limits to the fixed center approximation to Faddeev equations: the case of the \(\phi (2170)\). Phys. Rev. D 83, 116002 (2011)

    Article  ADS  Google Scholar 

  47. D. Gamermann, J. Nieves, E. Oset, E. Ruiz Arriola, Couplings in coupled channels versus wave functions: application to the X(3872) resonance. Phys. Rev. D 81, 014029 (2010)

    Article  ADS  Google Scholar 

  48. J.-J. Xie, A. Martinez Torres, E. Oset, Faddeev fixed center approximation to the \(N\bar{K}K\) system and the signature of a \(N^*(1920)(1/2^+)\) state. Phys. Rev. C 83, 065207 (2011)

    Article  ADS  Google Scholar 

  49. L. Roca, Pseudotensor mesons as three-body resonances. Phys. Rev. D 84, 094006 (2011)

    Article  ADS  Google Scholar 

  50. A. Aktas et al., Evidence for a narrow anti-charmed baryon state. Phys. Lett. B 588, 17 (2004)

    Article  ADS  Google Scholar 

  51. B. Aubert, et al. Search for the charmed pentaquark candidate Theta(c)(3100)0 in e+ e- annihilations at s**(1/2) = 10.58-GeV. Phys. Rev. D73, 091101 (2006)

  52. D. Gamermann, E. Oset, D. Strottman, M.J. Vicente-Vacas, Dynamically generated open and hidden charm meson systems. Phys. Rev. D 76, 074016 (2007)

    Article  ADS  Google Scholar 

  53. F. Aceti, R. Molina, E. Oset, The \(X(3872) \rightarrow J/\psi \gamma \) decay in the \(D {\bar{D}}^*\) molecular picture. Phys. Rev. D 86, 113007 (2012)

    Article  ADS  Google Scholar 

  54. X.-L. Ren, B.B. Malabarba, L.-S. Geng, K.P. Khemchandani, A. Martínez Torres, \(K^*\) mesons with hidden charm arising from \(KX(3872)\) and \(KZ_c(3900)\) dynamics. Phys. Lett. B785, 112–117 (2018)

  55. T.J. Burns, Phenomenology of P\(_{c}\)(4380)\(^{+}\), P\(_{c}\)(4450)\(^{+}\) and related states. Eur. Phys. J. A 51(11), 152 (2015)

    Article  ADS  Google Scholar 

  56. L. Geng, J. Lu, M.P. Valderrama, Scale invariance in heavy Hadron molecules. Phys. Rev. D 97(9), 094036 (2018)

    Article  ADS  Google Scholar 

  57. R. Aaij et al., Observation of the \({\varLambda }_b^0\rightarrow \chi _{c1}(3872)pK^-\) decay. JHEP 09, 028 (2019)

    ADS  Google Scholar 

  58. R. Aaij et al., Observation of \( {\varLambda }_b^0 \rightarrow \psi (2S)pK^-\) and \( {\varLambda }_b^0 \rightarrow J/\psi \pi ^+ \pi ^- pK^-\) decays and a measurement of the \({\varLambda }_b^0\) baryon mass. JHEP 05, 132 (2016)

    Article  ADS  Google Scholar 

  59. P.A. Zyla et al., Review of Particle Physics. PTEP 2020(8), 083C01 (2020)

    Google Scholar 

  60. S.S. Kamalov, E. Oset, A. Ramos, Chiral unitary approach to the K-deuteron scattering length. Nucl. Phys. A 690, 494–508 (2001)

    Article  ADS  Google Scholar 

  61. R. Chand, R.H. Dalitz, Charge-independence in K-deuterium capture reactions. Ann. Phys. 20, 1–19 (1962)

    Article  ADS  Google Scholar 

  62. V. Baru, E. Epelbaum, A. Rusetsky, The Role of nucleon recoil in low-energy antikaon-deuteron scattering. Eur. Phys. J. A 42, 111–120 (2009)

    Article  ADS  Google Scholar 

  63. M. Mai, V. Baru, E. Epelbaum, A. Rusetsky, Recoil corrections in antikaon-deuteron scattering. Phys. Rev. D 91(5), 054016 (2015)

    Article  ADS  Google Scholar 

  64. G. Faldt, Binding corrections and the Pion-Deuteron scattering length. Phys. Scripta 16, 81–86 (1977)

    Article  ADS  Google Scholar 

  65. A. Martinez Torres, K.P. Khemchandani, E. Oset, Solution to Faddeev equations with two-body experimental amplitudes as input and application to J**P = 1/2+, S = 0 baryon resonances. Phys. Rev. C 79, 065207 (2009)

  66. A. Martinez Torres, D. Jido, \(K{\varLambda }(1405)\) configuration of the \(K\bar{K}N\) system. Phys. Rev. C 82, 038202 (2010)

    ADS  Google Scholar 

  67. E.-W. Jia, H.-R. Pang, K anti-K N and anti-K anti-K N molecular states with I = 1/2, 3/2 and J**P = 1/2+ studied with three-body Faddeev calculations. Chin. Phys. Lett. 28, 061401 (2011)

    Article  ADS  Google Scholar 

  68. A. Martinez Torres, K.P. Khemchandani, M. Nielsen, F.S. Navarra, Predicting the existence of a 2.9 GeV \(Df_0(980)\) molecular state. Phys. Rev. D 87(3), 034025 (2013)

    Article  ADS  Google Scholar 

  69. V.R. Debastiani, J.M. Dias, E. Oset, Study of the \(DKK\) and \(DK\bar{K}\) systems. Phys. Rev. D 96(1), 016014 (2017)

    Article  ADS  Google Scholar 

  70. B.B. Malabarba, K.P. Khemchandani, A. Martinez-Torres, Decay processes of a pseudoscalar D(2900). Phys. Rev. D 104(11), 116002 (2021)

    Article  ADS  Google Scholar 

  71. R. Aaij et al., Study of \(D_J\) meson decays to \(D^+\pi ^-\), \(D^0 \pi ^+\) and \(D^{*+}\pi ^-\) final states in pp collision. JHEP 09, 145 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), processos n\({}^\circ \) 2019/17149-3, 2019/16924-3 and 2020/00676-8, and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant n\({}^\circ \) 305526/2019-7 and 303945/2019-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martínez Torres.

Additional information

Communicated by Eulogio Oset.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malabarba, B.B., Khemchandani, K.P. & Torres, A.M. \(N^*\) states with hidden charm and a three-body nature. Eur. Phys. J. A 58, 33 (2022). https://doi.org/10.1140/epja/s10050-022-00681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00681-2

Navigation