Skip to main content
Log in

Occupation numbers and nuclear transition matrix elements for \(0\nu \beta ^{-}\beta ^{-}\) decay within a mechanism involving neutrino mass

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

By reproducing the experimentally available sub-shell occupation numbers of \(^{100}\)Mo, \(^{100}\)Ru, \(^{128,130}\)Te, and \(^{130}\)Xe nuclei, sets of four HFB intrinsic wave functions are generated with single particle energies due to Woods–Saxon potential and four different parametrizations of pairing plus multipolar effective two body interaction. In the rest of the considered nuclei, the single particle energies are scaled accordingly. Reliability of wave functions has been ascertained by comparing theoretically calculated and observed yrast spectra and deformation parameters \(\beta _{2}\). Comparison between NTMEs \({\overline{M}}^{(K)}\) (\(K=\) \(0\nu \) and 0N) calculated with wave functions having adjusted and unadjusted occupation numbers shows that the former are in general reduced. Uncertainties in set of twelve nuclear transition matrix elements for the neutrinoless double-\(\beta \) decay of \(^{94,96}\)Zr, \(^{100}\)Mo, \(^{110}\)Pd, \(^{128,130}\)Te, and \(^{150}\)Nd isotopes calculated using three different parametrizations of Jastrow short range correlations turn out to be 10–14% and 37% due to the exchange of light and heavy Majorana neutrino, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the relevant and concerned data has been provided in the manuscript.]

References

  1. S. Dell’Oro, S. Marcocci, M. Viel, F. Vissani, Adv. High Energy Phys. 2016, 2162659 (2016)

    Article  Google Scholar 

  2. A.S. Barabash, Int. J. Mod. Phys. A 33, 1843001 (2018)

    Article  ADS  Google Scholar 

  3. J.D. Vergados, H. Ejiri, F. Šimkovic, Int. J. Mod. Phys. E 25, 1630007 (2016)

    Article  ADS  Google Scholar 

  4. J.D. Vergados, H. Ejiri, F. Šimkovic, Rep. Prog. Phys. 75, 106301 (2012)

    Article  ADS  Google Scholar 

  5. J. Engel, J. Menéndez, Rep. Prog. Phys. 80, 046301 (2017)

    Article  ADS  Google Scholar 

  6. P. Vogel, M.R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986)

    Article  ADS  Google Scholar 

  7. O. Civitarese, A. Faessler, T. Tomoda, Phys. Lett. B 194, 11 (1987)

    Article  ADS  Google Scholar 

  8. J. Suhonen, O. Civitarese, Phys. Rep. 300, 123 (1998)

    Article  ADS  Google Scholar 

  9. A. Faessler, F. Šimkovic, J. Phys. G 24, 2139 (1998)

    Article  ADS  Google Scholar 

  10. F. Šimkovic, V. Rodin, A. Faessler, P. Vogel, Phys. Rev. C 87, 045501 (2013)

    Article  ADS  Google Scholar 

  11. E. Caurier, F. Nowacki, A. Poves, Eur. Phys. J. A 36, 195 (2008)

    Article  ADS  Google Scholar 

  12. E. Caurier, J. Menéndez, F. Nowacki, A. Poves, Phys. Rev. Lett. 100, 052503 (2008)

    Article  ADS  Google Scholar 

  13. E. Caurier, F. Nowacki, A. Poves, J. Retamosa, Nucl. Phys. A 654, 973c (1999)

    Article  ADS  Google Scholar 

  14. E. Caurier, F. Nowacki, A. Poves, J. Retamosa, Phys. Rev. Lett. 77, 1954 (1996)

    Article  ADS  Google Scholar 

  15. J. Menéndez, A. Poves, E. Caurier, F. Nowacki, Nucl. Phys. A 818, 139 (2009)

    Article  ADS  Google Scholar 

  16. B.A. Brown, M. Horoi, R.A. Sen’kov, Phys. Rev. Lett. 113, 262501 (2014)

    Article  ADS  Google Scholar 

  17. M. Horoi, B.A. Brown, Phys. Rev. Lett. 110, 222502 (2013)

    Article  ADS  Google Scholar 

  18. M. Horoi, S. Stoica, Phys. Rev. C 81, 024321 (2010)

    Article  ADS  Google Scholar 

  19. R.A. Sen’kov, M. Horoi, Phys. Rev. C 93, 044334 (2016)

    Article  ADS  Google Scholar 

  20. B.A. Brown, D.L. Fang, M. Horoi, Phys. Rev. C 92, 041301(R) (2015)

    Article  ADS  Google Scholar 

  21. A. Neacsu, M. Horoi, Phys. Rev. C 91, 024309 (2015)

    Article  ADS  Google Scholar 

  22. R.A. Sen’kov, M. Horoi, Phys. Rev. C 90, 051301(R) (2014)

    Article  ADS  Google Scholar 

  23. R.A. Sen’kov, M. Horoi, B.A. Brown, Phys. Rev. C 89, 054304 (2014)

    Article  ADS  Google Scholar 

  24. E. Caurier, G. Martinz-Pinedo, F. Nowacki, A. Poves, A.P. Zucker, Rev. Mod. Phys. 77, 425 (2005)

    Article  ADS  Google Scholar 

  25. A. Poves, J. Phys. G Nucl. Part. Phys. 44, 084002 (2017)

    Article  ADS  Google Scholar 

  26. A. Faessler, V. Rodin, F. Šimkovic, J. Phys. G Nucl. Part. Phys. 39, 124006 (2012)

    Article  ADS  Google Scholar 

  27. D.L. Fang, A. Faessler, V. Rodin, F. Šimkovic, Phys. Rev. C 83, 034320 (2011)

    Article  ADS  Google Scholar 

  28. D.L. Fang, A. Faessler, V. Rodin, F. Šimkovic, Phys. Rev. C 82, 051301(R) (2010)

    Article  ADS  Google Scholar 

  29. M.T. Mustonen, J. Engel, Phys. Rev. C 87, 064302 (2013)

    Article  ADS  Google Scholar 

  30. D.L. Fang, A. Faessler, F. Šimkovic, Phys. Rev. C 97, 045503 (2018)

    Article  ADS  Google Scholar 

  31. P.K. Rath, R. Chandra, K. Chaturvedi, P.K. Raina, J.G. Hirsch, Phys. Rev. C 82, 064310 (2010)

    Article  ADS  Google Scholar 

  32. P.K. Rath, R. Chandra, K. Chaturvedi, P. Lohani, P.K. Raina, J.G. Hirsch, Phys. Rev. C 88, 064322 (2013)

    Article  ADS  Google Scholar 

  33. P.K. Rath, R. Chandra, P.K. Raina, K. Chaturvedi, J.G. Hirsch, Phys. Rev. C 85, 014308 (2012)

    Article  ADS  Google Scholar 

  34. P.K. Rath, R. Chandra, K. Chaturvedi, P. Lohani, P.K. Raina, Phys. Rev. C 93, 024314 (2016)

    Article  ADS  Google Scholar 

  35. T.R. Rodríguez, G. Martínez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010)

    Article  ADS  Google Scholar 

  36. J.M. Yao, L.S. Song, K. Hagino, P. Ring, J. Meng, Phys. Rev. C 91, 024316 (2015)

    Article  ADS  Google Scholar 

  37. L.S. Song, J.M. Yao, P. Ring, J. Meng, Phys. Rev. C 95, 024305 (2017)

    Article  ADS  Google Scholar 

  38. J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 87, 014315 (2013)

    Article  ADS  Google Scholar 

  39. F. Iachello, J. Barea, J. Kotila, AIP Conf. Proc. 1417, 62 (2011)

    Article  ADS  Google Scholar 

  40. F. Iachello, J. Barea, Nucl. Phys. B Proc. Suppl. 217, 5 (2011)

    Article  ADS  Google Scholar 

  41. J. Barea, F. Iachello, Phys. Rev. C 79, 044301 (2009)

    Article  ADS  Google Scholar 

  42. N. Yosida, F. Iachello, Prog. Theor. Exp. Phys. 2013, 043D01 (2013)

    Google Scholar 

  43. J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 91, 034304 (2015)

    Article  ADS  Google Scholar 

  44. G.A. Miller, J.E. Spencer, Ann. Phys. (NY) 100, 562 (1976)

    Article  ADS  Google Scholar 

  45. M. Kortelainen, J. Suhonen, Phys. Rev. C 76, 024315 (2007)

    Article  ADS  Google Scholar 

  46. M. Kortelainen, O. Civitarese, J. Suhonen, J. Toivanen, Phys. Lett. B 647, 128 (2007)

    Article  ADS  Google Scholar 

  47. F. Šimkovic, A. Faessler, H. Muther, V. Rodin, M. Stauf, Phys. Rev. C 79, 055501 (2009)

    Article  ADS  Google Scholar 

  48. J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

    Article  ADS  Google Scholar 

  49. J. Suhonen, O. Civitarese, Phys. Lett. B 725, 153 (2013)

    Article  ADS  Google Scholar 

  50. J. Engel, F. Šimkovic, P. Vogel, Phys. Rev. C 89, 064308 (2014)

    Article  ADS  Google Scholar 

  51. S.K. Khosa, P.N. Tripathi, S.K. Sharma, Phys. Lett. B 119, 257 (1982)

    Article  ADS  Google Scholar 

  52. J.D. Vergados, T.T.S. Kuo, Phys. Lett. B 35, 93 (1971)

    Article  ADS  Google Scholar 

  53. P. Federman, S. Pittel, Phys. Lett. B 77, 29 (1978)

    Article  ADS  Google Scholar 

  54. S.J. Freeman et al., Phys. Rev. C 96, 054325 (2017)

    Article  ADS  Google Scholar 

  55. B.P. Kay et al., Phys. Rev. C 87, 011302 (2013)

    Article  ADS  Google Scholar 

  56. J. Blomqvist, S. Wahlborn, Ark. Fys. 16/46, 545 (1960)

    Google Scholar 

  57. F. Šimkovic, G. Pantis, J.D. Vergados, A. Faessler, Phys. Rev. C 60, 055502 (1999)

    Article  ADS  Google Scholar 

  58. J.D. Vergados, Phys. Rep. 361, 1 (2002)

    Article  ADS  Google Scholar 

  59. M. Blenow, E.F. Martinez, J.L. Pavon, J. Menéndez, JHEP07, 096 (2010)

  60. F. Šimkovic, D. Štefánik, R. Dvornický, Front. Phys. 5, 57 (2017)

    Article  Google Scholar 

  61. J. Kotila, F. Iachello, Phys. Rev. C 85, 034316 (2012)

  62. S. Stoica, M. Mirea, Phys. Rev. C 88, 037303 (2013)

    Article  ADS  Google Scholar 

  63. D. Stefanik, R. Dvornicky, F. Šimkovic, P. Vogel, Phys. Rev. C 92, 055502 (2015)

    Article  ADS  Google Scholar 

  64. R. Chandra, K. Chaturvedi, P.K. Rath, P.K. Raina, J.G. Hirsch, Europhys. Lett. 86, 32001 (2009)

    Article  ADS  Google Scholar 

  65. N. Hinohara, J. Engel, Phys. Rev. C 90, 031301(R) (2014)

    Article  ADS  Google Scholar 

  66. P.J. Brussaard, P.W.M. Glaudemans, Shell-Model Applications in Nuclear Spectroscopy (North-Holland, Amsterdam, 1977)

    Google Scholar 

  67. B.H. Brandow, Rev. Mod. Phys. 39, 771 (1967)

    Article  ADS  Google Scholar 

  68. M. Hjorth-Jensen, T.T.S. Kuo, E. Osnes, Phys. Rep. 261, 125 (1995)

    Article  ADS  Google Scholar 

  69. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. I (World Scientific, Singapore, 1998)

    Book  MATH  Google Scholar 

  70. F. Šimkovic, R. Hodak, A. Faessler, P. Vogel, Phys. Rev. C 83, 015502 (2011)

    Article  ADS  Google Scholar 

  71. Pekka Pirinen, Jouni Suhonen, Phys. Rev. C 91, 054309 (2015)

    Article  ADS  Google Scholar 

  72. E. Caurier, F. Nowacki, A. Poves, Phys. Lett. B 711, 62 (2012)

    Article  ADS  Google Scholar 

  73. E. Caurier, A. Poves, A.P. Zuker, Phys. Lett. B 252, 13 (1990)

    Article  ADS  Google Scholar 

  74. E.A. Coello Perez, J. Menéndez, A. Swenk, Phys. Lett. B 797, 134885 (2019)

    Article  Google Scholar 

  75. L. Coraggio, L. De Angelis, T. Fukui, A. Gargano, N. Itaco, F. Nowacki, Phys. Rev. C 100, 014316 (2019)

    Article  ADS  Google Scholar 

  76. A.S. Barabash, Universe 6, 159 (2020)

    Article  ADS  Google Scholar 

  77. W.C. Haxton, G.J. Stephenson Jr., Prog. Part. Nucl. Phys. 12, 409 (1984)

    Article  ADS  Google Scholar 

  78. S. Raman, C.W. Nestor Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  79. S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor Jr., P.H. Stelson, At. Data Nucl. Data Tables 36, 1 (1987)

    Article  ADS  Google Scholar 

  80. K. Chaturvedi, R. Chandra, P.K. Rath, P.K. Raina, J.G. Hirsch, Phys. Rev. C 78, 054302 (2008)

    Article  ADS  Google Scholar 

  81. J. Beringer et al. [Particle Data Group], Phys. Rev. D 86, 010001 (2012)

  82. R.A. Sen’kov, M. Horoi, Phys. Rev. C 90, 051301(R) (2014)

    Article  ADS  Google Scholar 

  83. J. Menéndez, J. Phys. G Nucl. Part. Phys. 45, 014003 (2018)

    Article  ADS  Google Scholar 

  84. M. Horoi, J. Phys. Conf. Ser. 966, 012009 (2018)

    Article  Google Scholar 

  85. J. Hyvarinen, J. Suhonen, Phys. Rev. C 91, 024613 (2015)

    Article  ADS  Google Scholar 

  86. N.L. Vaquero, T.R. Rodríguez, J.L. Egido, Phys. Rev. Lett. 111, 142501 (2013)

    Article  ADS  Google Scholar 

  87. P.K. Rath, A. Kumar, R. Chandra, R. Gautam, P.K. Raina, B.M. Dixit, Int. J. Mod. Phys. E 28, 1950096 (2019)

  88. A. Faessler, G.L. Fogli, E. Lisi, V. Rodin, A.M. Rotunno, F. Šimkovic, Phys. Rev. D 79, 053001 (2009)

    Article  ADS  Google Scholar 

  89. N. Shimizu, J. Menéndez, K. Yako, Phys. Rev. Lett. 120, 142502 (2018)

    Article  ADS  Google Scholar 

  90. C. Brase, J. Menéndez, E.A. Coello Perez, A. Swenk. arXiv:2108.11805v1 [nucl-th]

  91. R. Arnold et al., Nucl. Phys. A 658, 299 (1999)

    Article  ADS  Google Scholar 

  92. A.S. Barabash, V.B. Brudanin, Phys. At. Nucl. 74, 312 (2011)

    Article  Google Scholar 

  93. R. Arnold et al., Phys. Rev. D 92, 072011 (2015)

    Article  ADS  Google Scholar 

  94. R.G. Winter, Phys. Rev. 85, 687 (1952)

    Article  ADS  Google Scholar 

  95. A.S. Barabash, Nucl. Phys. A 935, 52 (2015)

    Article  ADS  Google Scholar 

  96. C. Alduino et al., Phys. Rev. Lett. 120, 132501 (2018)

    Article  ADS  Google Scholar 

  97. R. Arnold et al., Phys. Rev. D 94, 072003 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by DAE-BRNS, India vide sanction no. 58/14/08/2020-BRNS.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Michael Bender.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nautiyal, V.K., Gautam, R., Das, N. et al. Occupation numbers and nuclear transition matrix elements for \(0\nu \beta ^{-}\beta ^{-}\) decay within a mechanism involving neutrino mass. Eur. Phys. J. A 58, 28 (2022). https://doi.org/10.1140/epja/s10050-022-00677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00677-y

Navigation