Skip to main content
Log in

Coherent and incoherent deeply virtual Compton scattering in electron–ion collisions at the EIC and LHeC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this paper we investigate the deeply virtual Compton scattering (DVCS) process in electron–ion collisions at the Electron–Ion Collider (EIC) and Large Hadron Electron Collider (LHeC). The coherent and incoherent DVCS cross sections and differential distributions are estimated considering the possible states of nucleon configurations in the nuclear wave function and taking into account of the nonlinear corrections to the QCD dynamics. The impact of the nonlinear (saturation) effects is estimated. Our results indicate that a future experimental analysis of these processes can shed light on the description of the QCD dynamics at high energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical research study, and is based upon analysis of the public experimental data, so no additional data is associated with this work.]

Notes

  1. A similar final state is also generated by the Bethe-Heitler (BH) process, where the elastic electron–hadron scattering is followed by photon emission off the electron. In our analysis, we will assume that the DVCS contribution can be experimentally separated.

References

  1. D. Boer, M. Diehl, R. Milner, R. Venugopalan, W. Vogelsang, D. Kaplan, H. Montgomery, S. Vigdor et al., arXiv:1108.1713 [nucl-th]

  2. A. Accardi, J.L. Albacete, M. Anselmino, N. Armesto, E.C. Aschenauer, A. Bacchetta, D. Boer, W. Brooks et al., Eur. Phys. J. A 52(9), 268 (2016)

    Article  ADS  Google Scholar 

  3. E.C. Aschenauer et al., Rept. Prog. Phys. 82(2), 024301 (2019)

    Article  ADS  Google Scholar 

  4. J. L. Abelleira Fernandez et al. [LHeC Study Group Collaboration], J. Phys. G 39, 075001 (2012)

  5. P. Agostini et al., arXiv:2007.14491 [hep-ex]

  6. F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010)

    Article  ADS  Google Scholar 

  7. H. Weigert, Prog. Part. Nucl. Phys. 55, 461 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Jalilian-Marian, Y.V. Kovchegov, Prog. Part. Nucl. Phys. 56, 104 (2006)

    Article  ADS  Google Scholar 

  9. A. Deshpande, R. Milner, R. Venugopalan, W. Vogelsang, Ann. Rev. Nucl. Part. Sci. 55, 165 (2005)

    Article  ADS  Google Scholar 

  10. E.R. Cazaroto, F. Carvalho, V.P. Goncalves, F.S. Navarra, Phys. Lett. B 671, 233 (2009)

    Article  ADS  Google Scholar 

  11. V.P. Goncalves, M.S. Kugeratski, M.V.T. Machado, F.S. Navarra, Phys. Rev. C 80, 025202 (2009)

    Article  ADS  Google Scholar 

  12. A. Caldwell, H. Kowalski, Phys. Rev. C 81, 025203 (2010)

    Article  ADS  Google Scholar 

  13. T. Lappi, H. Mantysaari, Phys. Rev. C 83, 065202 (2011)

    Article  ADS  Google Scholar 

  14. T. Toll, T. Ullrich, Phys. Rev. C 87, 024913 (2013)

    Article  ADS  Google Scholar 

  15. N. Armesto, A.H. Rezaeian, Phys. Rev. D 90(5), 054003 (2014)

    Article  ADS  Google Scholar 

  16. V.P. Gonçalves, D.S. Pires, Phys. Rev. C 91, 055207 (2015)

    Article  ADS  Google Scholar 

  17. T. Lappi, H. Mantysaari, R. Venugopalan, Phys. Rev. Lett. 114(8), 082301 (2015)

    Article  ADS  Google Scholar 

  18. H. Mantysaari, B. Schenke, Phys. Rev. Lett. 117(5), 052301 (2016)

    Article  ADS  Google Scholar 

  19. H. Mantysaari, B. Schenke, Phys. Rev. D 94(3), 034042 (2016)

  20. V.P. Goncalves, F.S. Navarra, D. Spiering, Phys. Lett. B 768, 299 (2017)

    Article  ADS  Google Scholar 

  21. J. Cepila, J.G. Contreras, M. Krelina, Phys. Rev. C 97(2), 024901 (2018)

    Article  ADS  Google Scholar 

  22. A. Luszczak, W. Schafer, Phys. Rev. C 97(2), 024903 (2018)

  23. H. Mantysaari, R. Venugopalan, Phys. Lett. B 781, 664–671 (2018)

    Article  ADS  Google Scholar 

  24. V.P. Goncalves, F.S. Navarra, D. Spiering, Phys. Lett. B 791, 299–304 (2019)

    Article  ADS  Google Scholar 

  25. D. Bendova, J. Cepila, J.G. Contreras, Phys. Rev. D 99(3), 034025 (2019)

    Article  ADS  Google Scholar 

  26. M. Krelina, V.P. Goncalves, J. Cepila, Nucl. Phys. A 989, 187–200 (2019)

    Article  ADS  Google Scholar 

  27. M. Lomnitz, S. Klein, Phys. Rev. C 99(1), 015203 (2019)

    Article  ADS  Google Scholar 

  28. H. Mantysaari, B. Schenke, Phys. Rev. C 101(1), 015203 (2020)

    Article  ADS  Google Scholar 

  29. Y. Hatta, B.W. Xiao, F. Yuan, Phys. Rev. D 95(11), 114026 (2017)

    Article  ADS  Google Scholar 

  30. V.P. Goncalves, D.E. Martins, C.R. Sena, Nucl. Phys. A 1004, 122055 (2020)

    Article  Google Scholar 

  31. H. Mäntysaari, K. Roy, F. Salazar, B. Schenke, Phys. Rev. D 103(9), 094026 (2021)

    Article  ADS  Google Scholar 

  32. D. Bendova, J. Cepila, J.G. Contreras, V.P. Gonçalves, M. Matas, Eur. Phys. J. C 81(3), 211 (2021)

    Article  ADS  Google Scholar 

  33. T. Toll, T. Ullrich, Comput. Phys. Commun. 185, 1835–1853 (2014)

    Article  ADS  Google Scholar 

  34. N.N. Nikolaev, B.G. Zakharov, Z. Phys. C 49, 607 (1991)

    Article  Google Scholar 

  35. N.N. Nikolaev, B.G. Zakharov, Z. Phys. C 53, 331 (1992)

    Article  ADS  Google Scholar 

  36. H. Kowalski, L. Motyka, G. Watt, Phys. Rev. D 74, 074016 (2006)

    Article  ADS  Google Scholar 

  37. M.L. Good, W.D. Walker, Phys. Rev. 120, 1857–1860 (1960)

    Article  ADS  Google Scholar 

  38. R. J. Glauber, in Lecture in Theoretical Physics, vol. 1, ed. by W. E. Brittin, L. G. Duham (Interscience, New York, 1959)

  39. V.N. Gribov, Sov. Phys. JETP 29, 483 (1969)

    ADS  Google Scholar 

  40. V.N. Gribov, Sov. Phys. JETP 30, 709 (1970)

    ADS  Google Scholar 

  41. A.H. Mueller, Nucl. Phys. B 335, 115 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

VPG is partially financed by the Brazilian funding agencies CNPq, FAPERGS and INCT-FNA (process number 464898/2014-5). DEM is partially financed by the Brazilian funding agencies CNPq (process number 164609/2020-2) and INCT-FNA (process number 464898/2014-5). CRS is partially financed by the Brazilian funding agencies CAPES (process number 001) and INCT-FNA (process number 464898/2014-5)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor P. Gonçalves.

Additional information

Communicated by X.-N. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, V.P., Martins, D.E. & Sena, C.R. Coherent and incoherent deeply virtual Compton scattering in electron–ion collisions at the EIC and LHeC. Eur. Phys. J. A 58, 18 (2022). https://doi.org/10.1140/epja/s10050-022-00664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00664-3

Navigation