Skip to main content
Log in

Evidence of forward–backward correlation of pions in ultra-relativistic ring- and jet-like events in \(^{16}O-Ag/Br\) interactions at \(E_{lab}=60\) A GeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

An investigation on the presence of the forward–backward correlations in the pions multiplicity, emitted in \(^{16}O-Ag/Br\) interactions at energy \(E_{lab} \)= 60 A GeV are carried out. The study of the forward–backward correlation between various observables which is separated by two different pseudorapidity intervals can be treated as an important probe to defining the primordial conditions for the formation of the Quark Gluon Plasma (QGP). We have observed the dependency of correlation fluctuations and correlation strength on pseudorapidity (\(\eta \)) and the increasing width of the pseudorapidity bin size \(\varDelta \eta \). The roughness of the multiplicities and the particle number deviations are also investigated. The nuclear photographic emulsion technique has been employed to collect the experimental data. We have performed the FRITIOF and Ultra-relativistic Quantum Molecular Dynamics (UrQMD) simulations to compare the experimental results with the simulated results. The analysis strongly indicates the presence of forward–backward correlations in the experimental distributions of pions beyond statistical noise. We have also analyzed the ring- and jet-like structure to confirm the presence of the forward–backward correlations in the multiplicities of \(^{16}O-Ag/Br\) interactions at 60 A GeV. We have also taken the variations of correlation fluctuations and correlation strength in \(\eta \) and \(\varDelta \eta \) space, respectively for the ring-like and jet-like structure. The average behavior of correlation parameters of ring-like events strongly differs from jet-like events due to expected Cherenkov Gluon radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: In this paper the simulated data has been generated by FRITIOF and UrQMD simulation method. All data generated or analysed during this study are included in this published article. The experimental data used in the present study was published by EPL, 80, 22003 (2007). https://doi.org/10.1209/0295-5075/80/22003.]

References

  1. EMU-1 Collaboration, M.I. Adamovich et al., Eur. Phys. J. A 1, 77 (1998)

  2. A.M. Tawfik, J. Phys. G 27, 2283 (2001)

    Article  ADS  Google Scholar 

  3. A.M. Tawfik, E. Ganssauge, Acta Phys. Hung. A 12, 53 (2000)

    Google Scholar 

  4. EMU-1 Collaboration, M.I. Adamovich et al., Acta Phys. Hung. A 13, 213 (2001)

  5. E.V. Shuryak, Phys. Rep. Sect. C Phys. Lett. 61(2), 71–158 (1980)

  6. M. Rybezynski, J. Phys. G 35(10), 104094 (2008)

  7. D. Ghosh, A. Deb, S.R. Sahoo, P.K. Haldar, M.A.K. Jafry, Nucl. Phys. A 707(1–2), 213–223 (2002)

    Article  ADS  Google Scholar 

  8. D. Ghosh, A. Deb, P.K. Haldar, Acta Phys. Polon. B 40(8) (2009)

  9. S. Bhattacharyya, Int. J. Mod. Phys. E 29(10) (2020)

  10. K. Aamodt et al. (ALICE Collaboration), Eur. Phys. J. C 68, 89 (2010)

  11. K. Fialkowski, R. Wit, Eur. Phys. J. C 70, 1 (2010)

    Article  ADS  Google Scholar 

  12. D. Ghosh, A. Deb, S.R. Sahoo, P.K. Haldar, S. Bhattacharyya, Mod. Phys. Lett. A 18(32), 2281–2286 (2003)

    Article  ADS  Google Scholar 

  13. A.N. Tawfik, H. Yassin, E.R.A. Elyazeed, Extensive/nonextensive statistics for pTpT distributions of various charged particles produced in p+p and A+A collisions in a wide range of energies. arXiv:1905.12756 [hep-ph]

  14. EMU01 Collaboration, M.I. Adamovich et al., J. Phys. G 22, 1469–1481 (1996)

  15. P. Mali, S.K. Manna, P.K. Haldar, A. Mukhopadhyay, G. Singh, Chaos. Solitons Fractals 94, 86–94 (2017)

  16. A.N. Tawfik, L.I. Abou-Salem, A.G. Shalaby, M. Hanafy, Adv. High Energy Phys. 2016, 2475916 (2016)

  17. P.K. Haldar, S.K. Manna, P. Saha, D. Ghosh, Astropart. Phys. 42, 76–85 (2013)

    Article  ADS  Google Scholar 

  18. NA49 Collaboration, M. Szuba, Indian J. Phys. 85, 1057 (2011)

  19. P. Carruthers, I. Sarcevic, Phys. Rev. Lett. 63, 1562 (1989)

    Article  ADS  Google Scholar 

  20. W. Ochs, J. Woseik, Phys. Lett. B 214, 617 (1988)

    Article  ADS  Google Scholar 

  21. B. Tomasik, I. Melo, S. Korony, M. Gintner, Indian J. Phys. 85, 1097 (2011)

    Article  ADS  Google Scholar 

  22. P. Carruthers et al., Phys. Lett. B 222, 487 (1989)

    Article  ADS  Google Scholar 

  23. A. Bialas, R.C. Hwa, Phys. Lett. B 253, 436 (1991)

    Article  ADS  Google Scholar 

  24. A. Bialas, R. Peschanski, Nucl. Phys. B 273, 703 (1986)

    Article  ADS  Google Scholar 

  25. A. Bialas, R. Peschanski, Nucl. Phys. B 308, 857 (1988)

    Article  ADS  Google Scholar 

  26. P.K. Haldar, S.K. Manna, Chin. Phys. Lett. 28(1), 012502 (2011)

    Article  Google Scholar 

  27. D. Ghosh, A. Deb, S. Biswas, P. Mandal, A.K. Mallick, P.K. Haldar, Indian J. Phys. 83(10), 1463–1485 (2009)

    Article  ADS  Google Scholar 

  28. B.I. Ablev, M.M. Aggarwal, Z. Ahammed et al., Phys. Rev. Lett. 103(17), 172301 (2009)

  29. S. Ahmad, A. Ahmad, A. Chandra et al., Phys. Scr. 87(4), 045201 (2013)

  30. D. Ghosh, A. Deb, M.B. Lahiri, P. Mandal, S. Biswas, P.K. Haldar, J. Phys. G Nucl. Part. Phys. 30(3), 351 (2004)

    Article  ADS  Google Scholar 

  31. G. Singh, K. Sengupta, A.Z.M. Ismail, P.L. Jain, Phys. Rev. C 39(5), 1835–1839 (1989)

    Article  ADS  Google Scholar 

  32. B.K. Srivastava, R.P. Scharenberg, T.J. Tarnowsky, Int. J. Mod. Phys. E 16, 2210 (2007)

    Article  ADS  Google Scholar 

  33. Y.L. Yan, D.-M. Zhou, B.-G. Dong et al., Phys. Rev. C 81, 044914 (2010)

  34. A.K. Dash, D.P. Mahapatra, B. Mohanty, Int. J. Mod. Phys. A 27(14), 1250079 (2012)

  35. M. Skoby, Nucl. Phys. A 854(1), 113–116 (2011)

    Article  ADS  Google Scholar 

  36. M. Adamovich et al., J. Phys. G 19, 2035 (1993)

    Article  Google Scholar 

  37. D. Ghosh, A. Deb, A. Dhar, R. Saha, D. Bhattacharya, P.K. Haldar, Phys. Scr. 82(4), 045201 (2010)

    Article  ADS  Google Scholar 

  38. M.K. Ghosh, P.K. Haldar, S.K. Manna, A. Mukhopadhyay, G. Singh, Nucl. Phys. A 858(1), 67–85 (2011)

    Article  ADS  Google Scholar 

  39. D. Ghosh, A. Deb, P.K. Haldar, S. Guptaroy, Indian J. Phys. 80, 807–813 (2006)

    Google Scholar 

  40. A.B. Aponasenka et al., ZhETF 30, 157 (1979)

    Google Scholar 

  41. D. Ghosh, A. Deb, P.K. Haldar, S.R. Sahoo, D. Maity, Europhys. Lett. 65(3), 311 (2004)

    Article  ADS  Google Scholar 

  42. I.M. Dremin, JETP Lett. 30(2), 140 (1979)

  43. I.M. Dremin, Nucl. Phys. A 767, 233 (2006)

  44. I.M. Dremin et al., Eur. Phys. J. C 46(2), 429 (2006)

    Article  ADS  Google Scholar 

  45. I.M. Dremin et al., Nucl. Phys. A 774, 853 (2006)

    Article  ADS  Google Scholar 

  46. D. Ghosh, A. Deb, P.K. Haldar, A. Dhar, Europhys. Lett. 80(2), 22003 (2007)

    Article  ADS  Google Scholar 

  47. N. Subba, A. Ahmed, P.K. Haldar, A.N. Tawfik, Int. J. Mod. Phys. E 30(1), 2150002 (2021)

    Article  ADS  Google Scholar 

  48. Ulrich Heinz, Raimond Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123–151 (2013)

    Article  ADS  Google Scholar 

  49. Megan Connors, Christine Nattrass, Rosi Reed, Sevil Salur, Rev. Mod. Phys. 90, 025005 (2018)

    Article  ADS  Google Scholar 

  50. Jean-Yves. Ollitrault, Phys. Rev. D 46, 229 (1992)

    Article  ADS  Google Scholar 

  51. S.K. Manna, P.K. Haldar, P. Mali, A. Mukhopadhyay, G. Singh, Int. J. Mod. Phys. E 27(01), 1850009 (2018)

    Article  ADS  Google Scholar 

  52. UA5 Collaboration, B.B. Back et al., Z. Phys. C 37, 191 (1998)

  53. KLM Collaboration, M. Cherry et al., Acta Phys. Pol. B 29, 2129 (1998)

  54. M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    Article  ADS  Google Scholar 

  55. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

    Article  ADS  Google Scholar 

  56. B. Zhang, C.M. Ko, B.A. Li, Z. Lin, Phys. Rev. C 61, 067901 (2000)

  57. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)

    Article  ADS  Google Scholar 

  58. BRAHMS Collaboration, I. Arsene et al., Nucl. Phys. A 757, 1 (2005)

  59. STAR Collaboration, J. Adams et al., Nucl. Phys. A 757, 102 (2005)

  60. PHENIX Collaboration, K. Adcox et al., Nucl. Phys. A 757, 184 (2005)

  61. P. Huovinen, P. Ruuskanen, Annu. Rev. Nucl. Part. Sci. 56, 163 (2006)

    Article  ADS  Google Scholar 

  62. E. Shuryak, Nucl. Phys. A 750, 64 (2005)

    Article  ADS  Google Scholar 

  63. ALICE Collaboration, J. Adam et al., Phys. Rev. C 93, 034913 (2016)

  64. ALICE Collaboration, B. Abelev et al., Phys. Rev. C 88, 044910 (2013)

  65. ALICE Collaboration, J. Adam et al., Phys. Lett. B 762, 376 (2016)

  66. ALICE Collaboration, B. Abelev et al., J. High Energy Phys. 06, 190 (2016)

  67. U. Heinz, M. Jacob, arXiv:nucl-th/0002042v1 (2000)

  68. A.M. Baldin et al., Sov. J. Nucl. Phys. 20, 629 (1976) [Yad. Fiz. 20, 1201 (1975)] (in Russian)

  69. S. Lim, Y. Lim, C. Oh, K. Phua, Z. Phys. C 43, 621 (1989)

  70. M. Abdel-Aziz, M. Bleicher, arXiv:nucl-th/0605072-v2 (2006)

  71. A. Capella, U. Sukhatme, C.-I. Tan, J.T.T. Van, Phys. Rep. 236, 225 (1994)

    Article  ADS  Google Scholar 

  72. S.K. Manna, A. Mukhopadhyay, P. Mali, Int. J. Mod. Phys. E 30(4), 2150021 (2021)

  73. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, Int. J. Mod. Phys. E 26, 1750016 (2017)

    Article  ADS  Google Scholar 

  74. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, J. Phys. G 40, 025105 (2013)

    Article  ADS  Google Scholar 

  75. G. Singh, K. Sengupta, P.L. Jain, Phys. Rev. Lett. 61(9) (1988)

  76. EMU08Collaboration, K. Sengupta et al., Phys. Lett. B 236, 219 (1990)

  77. C.F. Powell, P.H. Fowler, D.H. Perkins, The Study of Particles by the Photographic Method(Pergamon, New York) (1959)

  78. M. Belkacem et al., Phys. Rev. C 58, 1727 (1998)

    Article  ADS  Google Scholar 

  79. P.K. Haldar, S.K. Manna, P. Saha, D. Ghosh, PRAMANA J. Phys. 80(4), 631–642 (2013)

  80. B. Nilsson-Almqvist, E. Stenlund, Comput. Phys. Commun. 43, 387 (1987)

    Article  ADS  Google Scholar 

  81. B. Andersson, G. Gustafson, B. Nilsson-Almqvist, Nucl. Phys. B 281, 289 (1987)

    Article  ADS  Google Scholar 

  82. S. Haussler et al., Nucl. Phys. A 785, 253c (2007)

    Article  ADS  Google Scholar 

  83. P. Steinberg et al., HOBOS Collaboration, QUARK MATTER 2005: Proc. 18th Int. Conf. on Ultra-Relativistic Nucleus-Nucleus Collisions (Budapest, Hungary). Nucl. Phys. A 774, 631 (2006)

  84. K. Wozniak, PHOBOS Collaboration, Int. J. Mod. Phys. E 16, 2187 (2007)

  85. K. Wozniak, PHOBOS Collaboration, arXiv:1005.1478v1 [nucl-ex] (2010)

  86. B.B. Back et al., PHOBOS Collaboration, Phys. Rev. C 74, 011901 (2006)

  87. M. Adamovich et al., J. Phys. G 19, 2035 (1993)

    Article  Google Scholar 

  88. Roy F. Schwitters, Annu. Rev. Nucl. Sci. 26, 89–149 (1976)

    Article  ADS  Google Scholar 

  89. A. Toia, ALICE Collaboration, J. Phys. Conf. Ser. 798, 012068 (2017)

  90. M.I. Adamovich et al., EMU01 Collaboration, Phys. Lett. B 227, 285 (1989)

  91. M.I. Adamovich et al., EMU01 Collaboration, Phys. Lett. B 223, 262 (1989)

  92. Swarnapratim Bhattacharyya, Eur. Phys. J. A 57, 164 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors heartily acknowledge the anonymous learned reviewer for his valuable comments on the paper which make it more accurate and readable. The authors also express their deepest gratitude to Prof. D. Ghosh of Deepa Ghosh Research Foundation, Kolkata 700031, India, Prof. Argha Deb of Jadavpur University, Kolkata 700032, India and Amitava Mukhopadhyay of the University of North Bengal for all kinds of supports and encouragement. One of the authors (A.Ahmed) gratefully acknowledges the financial help sanctioned by the G.O. No. 52-Edn(B)/5B-15/2017 dt. 7.6.2017 read with 65-Edn(B)/5-15/2017 dt. 11.7.2017 for Swami Vivekananda Merit-cum-Means Scholarship, Government of West Bengal, India.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Giorgio Torrieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Subba, N., Bhattacharjee, S. et al. Evidence of forward–backward correlation of pions in ultra-relativistic ring- and jet-like events in \(^{16}O-Ag/Br\) interactions at \(E_{lab}=60\) A GeV. Eur. Phys. J. A 57, 322 (2021). https://doi.org/10.1140/epja/s10050-021-00635-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00635-0

Navigation