Skip to main content
Log in

Excitation functions for the formation of \(^{90}\)Nb, \(^{91\mathrm{m}}\)Nb and \(^{92\mathrm{m}}\)Nb in the \(^{\mathrm{nat}}\)Zr(p,x) reactions

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The excitation function of the \(^{nat}\)Zr(p,x)\(^{90}\)Nb, \(^{nat}\)Zr(p,x)\(^{91m}\)Nb and \(^{nat}\)Zr(p,x)\(^{92m}\)Nb reactions were measured within the incident proton energies range of 10.58 MeV to 43.61 MeV, based on the stacked-foil activation technique. The degradation of proton energy along the sample stack was calculated using the code SRIM-2013, and the proton flux was determined by using the \(^{nat}\)Cu(p,x)\(^{62,65}\)Zn monitor reactions. The induced \(\gamma \)-ray activity needed to determine the reaction cross-section was measured by using an HPGe detector. The measured cross sections are compared with the literature data and with the theoretical predictions based on TALYS-1.95 code. For the theoretical calculations, the effect of different level density models and \(\gamma \)-ray strength functions was taken into account. Besides the measured excitation functions, the integral yields of \(^{90}\)Nb, \(^{91m}\)Nb and \(^{92m}\)Nb formation were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data used in this paper are deposited in the EXFOR data library (http://www-nds.iaea.org/exfor) and TENDEL-2019 data library (http://tendl.web.psi.ch/tendl_2019/tendl2019.html) and the data produced during this study will be deposited in the EXFOR data library.]

References

  1. P.T.M. Shan, M.M. Musthafa, T. Najmunnisa, P.M. Aslam, K.K. Rajesh, K. Hajara, P. Surendran, J.P. Nair, A. Shanbagh, S.S. Ghugre, Eur. Phys. J. Plus 135, 385 (2020)

    Article  Google Scholar 

  2. P.T.M. Shan, M.M. Musthafa, T. Najmunnisa, P.M. Aslam, K.K. Rajesh, K. Hajara, P. Surendran, J.P. Nair, A. Shanbagh, S. Ghugre, Nucl. Phys. A 974, 9 (2018)

    Article  ADS  Google Scholar 

  3. L.M. Oranj, N.S. Jung, M. Bakhtiari, A. Lee, H.S. Lee, Phys. Rev. C 95, 044609 (2017)

    Article  ADS  Google Scholar 

  4. S.M. Qaim, I. Spahn, B. Scholten, B. Neumaier, Radiochim. Acta 104(9), 601 (2016)

    Article  Google Scholar 

  5. O. Lebeda, V. Lozza, J. Petzoldt, J. Štursa, V. Zdychová, K. Zuber, Nucl. Phys. A 929, 129 (2014)

    Article  ADS  Google Scholar 

  6. K. Surendra, Y.O. Lee, S. Mukherijee, Nucl. Instrum. Methods B 283, 46 (2012)

    Article  ADS  Google Scholar 

  7. F. Tárkányi, F. Ditrói, S. Takács, A. Hermanne, M. Al-Abyad, H. Yamazaki, M. Bada, M.A. Mohammadi, Appl. Radiat. Isot. 97, 149 (2015)

    Article  Google Scholar 

  8. F. Szelecsényi, G.F. Steyn, Z. Kovács, C. Vermeulen, K. Nagatsu, M.R. Zhang, K. Suzuki, Nucl. Instrum. Methods B 343, 173 (2015)

  9. M. Murakami, H. Haba, S. Goto, J. Kanaya, H. Kudo, Appl. Radiat. Isot. 90, 149 (2014)

    Article  Google Scholar 

  10. M. Al-Abyad, A.S. Abdel-Hamid, F. Tarkanyi, F. Ditroi, S. Takacs, U. Seddik, I.I. Bashter, Appl. Radiat. Isot. 70, 257 (2012)

    Article  Google Scholar 

  11. M.S. Uddin, M.U. Khandaker, K.S. Kim, Y.S. Lee, M.W. Lee, G.N. Kim, Nucl. Instrum. Methods B 266, 13 (2008)

    Article  ADS  Google Scholar 

  12. R. Michel, R. Bodemann, H. Busemann, R. Dam, M. Gloris, H.J. Lange, B. Klug, A. Krins, I. Leya, M. Liipke, S. Neumann, H. Reinhardt, M.S. Biittgen, U. Herpers, Th. Schiekel, F. Sudbrock, B. Holmqvist, H. Cond, P. Malmborg, M. Suter, B.D. Hannen, P.W. Kubik, H.A. Synal, D. Filges, Nucl. Instrum. Methods B 129, 153 (1997)

    Article  ADS  Google Scholar 

  13. M.U. Khandaker, K. Kim, M.W. Lee, K.S. Kim, G.N. Kim, Y.S. Cho, Y.O. Lee, Appl. Radiat. Isot. 67, 1341 (2009)

    Article  Google Scholar 

  14. S.C. Yang, M.H. Jung, G.N. Kim, Y.O. Lee, Nucl. Instrum. Methods B 436, 179 (2018)

    Article  ADS  Google Scholar 

  15. B. Lawriniang, S. Badwar, R. Ghosh, B. Jyrwa, H. Naik, S.V. Suryanarayana, Y..P.. Naik, Eur. Phys. J. A 54, 141 (2018)

    Article  ADS  Google Scholar 

  16. S. Busse, F. Rösch, S.M. Qaim, Radiochim. Acta 90, 1 (2002)

    Article  Google Scholar 

  17. V. Radchenko, H. Hauser, M. Eisenhut, D.J. Vugts, G.A.M.S. van Dongen, F. Roesch, Radiochim. Acta 100(11), 857–864 (2012). https://doi.org/10.1524/ract.2012.1971

  18. G. Gyürky, Z. Fulop, F. Kappeler, G.G. Kiss, A. Wallner, Eur. Phys. J. A 55, 41 (2019). https://doi.org/10.1140/epja/i2019-12708-4

  19. G. Blessing, W. Brautigam, H.G. Boge, N. Gad, B. Scholten, S.M. Qaim, Appl. Radiat. Isot. 46, 955 (1995)

    Article  Google Scholar 

  20. N.V. Do, N.T. Luan, N.T. Hien, G.N. Kim, N.T. Xuan, K.T. Thanh, Eur. Phys. J. A 56, 194 (2020)

    Article  Google Scholar 

  21. J.F. Ziegler, SRIM-2003. Nucl. Instrum. Methods B 219–220, 1027 (2004)

    Article  ADS  Google Scholar 

  22. J.F. Ziegler, J.P. Biersack, U. Littmark, SRIM 2003 code, Version 96.xx. The Stopping and Range of Ions in Solids. Pergamon, New York, available from http://www.srim.org/

  23. S.M. Qaim, F. Tárkányi, P. Obložinský, K. Gul, A. Hermanne, M.G. Mustafa, F.M. Nortier, B. Scholten, Y. Shubin, S. Takács, Y. Zhuang, IAEA-TECDOC-1211, Vienna (2001). http://wwwnds.iaea.org/medical/

  24. A. Koning, S. Hilaire, S. Goriely, TALYS-1.95, a nuclear reaction program, NL-1755 ZG Petten, The Netherlands (2019). https://tendl.web.psi.ch/tendl_2019/talys.html

  25. M.U. Khandaker, A.K.M.M.H. Meaze, K.S. Kim, D.C. Son, G.N. Kim, J. Korean Phys. Soc. 48, 821 (2006)

    Google Scholar 

  26. Nudat 2.7- National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/

  27. M.C. Lepy, L.F. Sylvie, Appl. Radiat. Isot. 70, 2137 (2012)

    Article  Google Scholar 

  28. Ch. Agarwl, L.S. Danu, M. Gathibandhe, A. Goswami, D.C. Biswas, Nucl. Instrum. Methods A 763, 240 (2014)

    Article  ADS  Google Scholar 

  29. H. Zaneb, M. Hussain, N. Amjed, S.M. Qaim, Appl. Radiat. Isot. 104, 232 (2015)

    Article  Google Scholar 

  30. M. Yiğit, A. Kara, J. Radioanal. Nucl. Chem. 314(3), 2383 (2017). https://doi.org/10.1007/s10967-017-5613-3

    Article  Google Scholar 

  31. R. Capote, M. Herman, P. Obložinský, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Z. Ge, Y. Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.S. Soukhovitskii, P. Talou, RIPL—reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

  32. S.Y.F. Chu, L.P. Ekström, R.B. Ferestone, The Lund/LBNL Nuclear Data Search, Version 2.0 (1999). http://nucleardata.nuclear.lu.se/nucleardata/toi/

  33. S. Hilaire, S. Goriely, Nucl. Phys. A 779, 63 (2006)

    Article  ADS  Google Scholar 

  34. A.J. Koning, S. Hilaire, S. Goriely, Nucl. Phys. A 810, 13 (2008)

    Article  ADS  Google Scholar 

  35. A. Koning, S. Hilaire, S. Goriely, TALYS 1.9. A nuclear reaction program (2017). http://www.talys.eu/

  36. N.V. Kurenkov, V.P. Lunev, Y. Shubin, Appl. Radiat. Isot. 50, 541 (1999). https://doi.org/10.1016/S0969-8043(98)00048-7

  37. N.N. Krasnov, Int. J. Appl. Radiat. Isot. 25, 223–227 (1974)

    Article  Google Scholar 

  38. K. Szkliniarz, M. Sitarz, R. Walczak, J. Jastrebski, A. Bilewicz, J. Choinski, A. Jakubowski, A. Majkowska, A. Stolarz, A. Trzcinska, W. Zipper, Appl. Radiat. Isot. 118, 182–189 (2016)

    Article  Google Scholar 

  39. N. Otsuka, S. Takács, Radiochim. Acta 103, 1–6 (2015)

    Article  ADS  Google Scholar 

  40. M. Isshiki, Y. Fukuda, K. Igaki, Proton activation analysis of trace impurities in purified cobalt. J. Radioanal. Nucl. Chem. 82(1), 135–142 (1984)

    Article  Google Scholar 

  41. I.O. Konstantinov, P.P. Dmitriev, V.I. Bolotskikh, Sov. At. Energy 60(5), 390–395 (1986)

    Article  Google Scholar 

  42. K. Abe, A. Lizuka, A. Hasegawa, S. Morozumi, Induced radioactivity of component materials by 16-MeV protons and 30-MeV alpha particles. J. Nucl. Mater. 123(1–3), 972–976 (1964)

    ADS  Google Scholar 

  43. P.P. Dmitriev, G.A. Molin, Radionuclide yields for thick targets at 22 MeV proton energy (No. INDC (CCP)-188/L). International Atomic Energy Agency (1982)

Download references

Acknowledgements

The authors would like to express their sincere thanks to the staff of the MC-50 Cyclotron in the Korea Institute of Radiological and Medical Sciences (KIRAMS) for the excellent operation and their support during the experiment. This research was partly supported by the National Research Foundation of Korea through a grant provided by the Ministry of Science and ICT (NRF-2017R1D1A1B03030484, and NRF-2018R1A6A1A06024970) and by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.04-2018.314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guinyun Kim.

Additional information

Communicated by Jose Benlliure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Do, N., Thanh Luan, N., Tien Thanh, K. et al. Excitation functions for the formation of \(^{90}\)Nb, \(^{91\mathrm{m}}\)Nb and \(^{92\mathrm{m}}\)Nb in the \(^{\mathrm{nat}}\)Zr(p,x) reactions. Eur. Phys. J. A 57, 324 (2021). https://doi.org/10.1140/epja/s10050-021-00632-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00632-3

Navigation