Skip to main content
Log in

Neutral and charged mesons in magnetic fields

A resonance gas in a non-relativistic quark model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We analyze mesons in constant magnetic fields (B) within a non-relativistic constituent quark model. Our quark model contains a harmonic oscillator type confining potential, and we perturbatively treat short range correlations to account for the spin-flavor energy splittings. We study both neutral and charged mesons taking into account the internal quark dynamics. The neutral states are labelled by two-dimensional momenta for magnetic translations, while the charged states by two discrete indices related to angular momenta. For \(B \ll \varLambda _\mathrm{QCD}^2\) (\(\varLambda _\mathrm{QCD}\sim 200\) MeV: the QCD scale), the analyses proceed as in usual quark models, while special precautions are needed for strong fields, \(B \sim \varLambda _\mathrm{QCD}^2\), especially when we treat short range correlations such as the Fermi-Breit-Pauli interactions. We compute the energy spectra of mesons up to energies of \(\sim 2.5\) GeV and use them to construct the meson resonance gas. Within the assumption that the constituent quark masses are insensitive to magnetic fields, the phase space enhancement for mesons significantly increases the entropy, assisting a transition from a hadron gas to a quark gluon plasma. We confront our results with the lattice data, finding reasonable agreement for the low-lying spectra and the entropy density at low temperature less than \(\sim 100\) MeV, but our results at higher energy scale suffer from artifacts of our confining potential and non-relativistic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data in this paper is provided upon request.]

Notes

  1. Mesons should be made of quarks with unequal charges, e.g., \(\bar{u}d\) having \(-2/3\) and \(-1/3\) charges.

  2. For the pseudo momentum operator, one often starts with the expression \(\mathbf {{\mathcal {K}}}' = \mathbf {p}+ e\mathbf {A}\). This definition is less general than Eq. (5). The commutation relation \( [ \hat{ \mathbf {\varPi }}, \hat{ \mathbf {{\mathcal {K}}}}' ]=0\) is not satisfied for a general gauge choice (except for the symmetric gauge).

  3. We found that our sign of the \(\mathbf {B}_q \cdot \hat{\mathbf {l}}\) term is in conflict with Refs. [60] and [61].

  4. In particular for equal masses, \(4\mu /M=1\), and at large B,

    $$\begin{aligned} 1-\eta = 1- B_q^2/{\mathcal {B}}_q^2 ~\sim ~ 8\mu \alpha /B_q^2 ~\sim ~ \varLambda _\mathrm{QCD}^4/B_q^2 , \end{aligned}$$
    (56)

    so that the coefficient of \(\mathbf {K} _\perp ^2\) are suppressed. Also \(\delta \hat{H}_\perp =0\) in this case.

  5. The second order effects need the excitation energy of \(\sim |{\mathcal {B}}_q|/\mu \), and the hopping matrix elements are \(\sim \sqrt{ |{\mathcal {B}}_q| }\), so the second order correction to the energy is

    $$\begin{aligned} \sim \eta ^2 g_{\varDelta m}^2 \mu \mathbf {K} _\perp ^2 . \end{aligned}$$
    (58)

    The \(g_{\varDelta m} =0\) for \(m_1=m_2\). If we take \(m_1 = m_{u,d}\) and \(m_2 = m_s \simeq 5 /3 \times m_{u,d}\), then \(\mu = 5m_u/8\) and \(g_{\varDelta m} = 2/5m_u\), and this second order correction is numerically suppressed. In the following we will ignore the second order corrections.

  6. A special simplification occurs when the conditions \(e_1=e_2\) and \(m_1 = m_2\) are both satisfied, as in quantum Hall systems made by many electrons. These conditions are not satisfied for mesons in QCD, but there may be some applications for diquarks with identical flavors.

  7. The exception is the case of identical particles, \(e_1=e_2=e_R/2\) and \(m_1=m_2=M/2\), for which \(c_\mathrm{mix}=0\) and \(c_R = 1/2\,M\), which allow us to separately treat R- and r-parts.

  8. Some qualitative features. For the weak B case, \(B_r /{\mathcal {B}}_r \sim B_r /\varLambda _\mathrm{QCD}^2 \ll 1\) so that the coupling behaves as \(f_\pm /2 \sim 1/2\). The first two terms include \(\tilde{\varPi }_r^\pm \) which, at weak B, mainly describe the excitations inside of confining potentials, while the last two terms with \(\tilde{{\mathcal {K}}}_r^\pm \) describe the motion of the guiding centers in relative coordinates. For the strong B case, \(B_r /{\mathcal {B}}_r \sim B_r /\varLambda _\mathrm{QCD}^2 \simeq 1-\varLambda _\mathrm{QCD}^4/B_r^2\), so \(f_- \sim \varLambda _\mathrm{QCD}^4/B_r^2 \ll 1\). In this regime excitations within the confining potential can easily occur with \(f_+ \sim 1\), while the processes involving changes in \(n_{\tilde{{\mathcal {K}}}}\) are suppressed by a factor \(f_-\).

  9. In Ref. [62], the author computed the PDG based HRG entropy at finite B, regarding hadrons as elementary particles. The resulting entropy density to \(T \sim 100\) MeV is found to be very close to the \(B=0\).

References

  1. V.A. Miransky, I.A. Shovkovy, Phys. Rept. 576, 1–209 (2015)

    Article  ADS  Google Scholar 

  2. K. Fukushima, Prog. Part. Nucl. Phys. 107, 167–199 (2019)

    Article  ADS  Google Scholar 

  3. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo, JHEP 02, 044 (2012)

    Article  ADS  Google Scholar 

  4. M. D’Elia, F. Manigrasso, F. Negro, F. Sanfilippo, Phys. Rev. D 98(5), 054509 (2018)

    Article  ADS  Google Scholar 

  5. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Lett. B 682, 484–489 (2010)

    Article  ADS  Google Scholar 

  6. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, Phys. Rev. D 86, 071502 (2012)

    Article  ADS  Google Scholar 

  7. F. Bruckmann, G. Endrodi, T.G. Kovacs, JHEP 04, 112 (2013)

    Article  ADS  Google Scholar 

  8. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Phys. Rev. D 89(11), 114502 (2014)

    Article  ADS  Google Scholar 

  9. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, Phys. Rev. D 94(9), 094007 (2016)

    Article  ADS  Google Scholar 

  10. C. Bonati, S. Calì, M. D’Elia, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, Phys. Rev. D 98(5), 054501 (2018)

    Article  ADS  Google Scholar 

  11. G.S. Bali, F. Bruckmann, G. Endrödi, S.D. Katz, A. Schäfer, JHEP 08, 177 (2014)

    Article  ADS  Google Scholar 

  12. Y. Hidaka, Phys. Rev. D 87(9), 094502 (2013)

    Article  ADS  Google Scholar 

  13. E.V. Luschevskaya, O.V. Teryaev, D.Y. Golubkov, O.V. Solovjeva, R.A. Ishkuvatov, JHEP 11, 186 (2018)

    Article  ADS  Google Scholar 

  14. M.A. Andreichikov, B.O. Kerbikov, E.V. Luschevskaya, Y.A. Simonov, O.E. Solovjeva, JHEP 05, 007 (2017)

    Article  ADS  Google Scholar 

  15. E.V. Luschevskaya, O.E. Solovjeva, O.V. Teryaev, JHEP 09, 142 (2017)

    Article  ADS  Google Scholar 

  16. K. Hattori, A. Yamamoto, PTEP 2019(4), 043B04 (2019)

    Google Scholar 

  17. G.S. Bali, B.B. Brandt, G. Endrődi, B. Gläßle, Phys. Rev. D 97(3), 034505 (2018)

    Article  ADS  Google Scholar 

  18. H. T. Ding, S. T. Li, A. Tomiya, X. D. Wang, Y. Zhang, Phys. Rev. D 104(1), 014505 (2021)

    Article  ADS  Google Scholar 

  19. K.G. Klimenko, Z. Phys. C. 54, 323–330 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249–290 (1996)

    Article  ADS  Google Scholar 

  21. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, ibid. Phys. Lett. 349, 477–483 (1995)

    Article  Google Scholar 

  22. H. Suganuma, T. Tatsumi, Ann. Phys. 208, 470–508 (1991)

    Article  ADS  Google Scholar 

  23. A.J. Mizher, M.N. Chernodub, E.S. Fraga, Phys. Rev. D 82, 105016 (2010)

    Article  ADS  Google Scholar 

  24. R. Gatto, M. Ruggieri, Phys. Rev. D 83, 034016 (2011)

    Article  ADS  Google Scholar 

  25. G. Cao. arXiv:2103.00456 [hep-ph]

  26. A. Bandyopadhyay, R.L.S. Farias, Eur. Phys. J. ST 230(3), 719–728 (2021)

    Article  Google Scholar 

  27. R.L.S. Farias, K.P. Gomes, G.I. Krein, M.B. Pinto, Phys. Rev. C 90(2), 025203 (2014)

    Article  ADS  Google Scholar 

  28. M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, Phys. Rev. D 89(11), 116011 (2014)

    Article  ADS  Google Scholar 

  29. M. Ferreira, P. Costa, D.P. Menezes, C. Providência, N. Scoccola, Phys. Rev. D 89(1), 016002 (2014)

    Article  ADS  Google Scholar 

  30. G. Endrődi, G. Markó, JHEP 08, 036 (2019)

    Article  ADS  Google Scholar 

  31. S. Mao, Phys. Rev. D 94(3), 036007 (2016)

    Article  ADS  Google Scholar 

  32. S. Mao, Phys. Lett. B 758, 195–199 (2016)

    Article  ADS  Google Scholar 

  33. A. Ayala, R.L.S. Farias, S. Hernández-Ortiz, L.A. Hernández, D.M. Paret, R. Zamora, Phys. Rev. D 98(11), 114008 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Ayala, J.L. Hernández, L.A. Hernández, R.L.S. Farias, R. Zamora, Phys. Rev. D 102(11), 114038 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. E.S. Fraga, L.F. Palhares, Phys. Rev. D 86, 016008 (2012)

    Article  ADS  Google Scholar 

  36. S. Ozaki, Phys. Rev. D 89(5), 054022 (2014)

    Article  ADS  Google Scholar 

  37. K. Fukushima, Y. Hidaka, Phys. Rev. Lett. 110(3), 031601 (2013)

    Article  ADS  Google Scholar 

  38. H. Taya, Phys. Rev. D 92(1), 014038 (2015)

    Article  ADS  Google Scholar 

  39. M.N. Chernodub, Phys. Rev. D 82, 085011 (2010)

    Article  ADS  Google Scholar 

  40. M.N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011)

    Article  ADS  Google Scholar 

  41. B. Sheng, Y. Wang, X. Wang and L. Yu. arXiv:2010.05716 [hep-ph]

  42. H. Liu, X. Wang, L. Yu, M. Huang, Phys. Rev. D 97(7), 076008 (2018)

    Article  ADS  Google Scholar 

  43. Z. Wang, P. Zhuang, Phys. Rev. D 97(3), 034026 (2018)

    Article  ADS  Google Scholar 

  44. S.S. Avancini, R.L.S. Farias, W.R. Tavares, Phys. Rev. D 99(5), 056009 (2019)

    Article  ADS  Google Scholar 

  45. T. Kojo, N. Su, Phys. Lett. B 720, 192–197 (2013)

    Article  ADS  Google Scholar 

  46. T. Kojo, N. Su, Phys. Lett. B 726, 839–845 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  47. T. Kojo, N. Su, Nucl. Phys. A 931, 763–768 (2014)

    Article  ADS  Google Scholar 

  48. K. Hattori, T. Kojo, N. Su, Nucl. Phys. A 951, 1–30 (2016)

    Article  ADS  Google Scholar 

  49. J. Braun, W.A. Mian, S. Rechenberger, Phys. Lett. B 755, 265–269 (2016)

    Article  ADS  Google Scholar 

  50. N. Mueller, J. M. Pawlowski, Phys. Rev. D 91(11), 116010 (2015)

    Article  ADS  Google Scholar 

  51. N. Mueller, J.A. Bonnet, C.S. Fischer, Phys. Rev. D 89(9), 094023 (2014)

    Article  ADS  Google Scholar 

  52. A. Ayala, C.A. Dominguez, L.A. Hernandez, M. Loewe, R. Zamora, Phys. Lett. B 759, 99–103 (2016)

    Article  ADS  Google Scholar 

  53. Y.B. Zeldovich, A.D. Sakharov, Acta Phys. Hung. 22, 153–157 (1967)

    Article  Google Scholar 

  54. A.D. Sakharov, Sov. Phys. JETP 51, 1059–1060 (1980). (SLAC-TRANS-0191)

    ADS  Google Scholar 

  55. A. De Rujula, H. Georgi, S.L. Glashow, Phys. Rev. D 12, 147–162 (1975)

    Article  ADS  Google Scholar 

  56. N. Isgur, G. Karl, Phys. Rev. D 20, 1191–1194 (1979)

    Article  ADS  Google Scholar 

  57. Y. A. Simonov, B. O. Kerbikov and M. A. Andreichikov. arXiv:1210.0227 [hep-ph]

  58. M.A. Andreichikov, B.O. Kerbikov, V.D. Orlovsky, Y.A. Simonov, Phys. Rev. D 87(9), 094029 (2013)

    Article  ADS  Google Scholar 

  59. V.D. Orlovsky, Y.A. Simonov, JHEP 09, 136 (2013)

    Article  ADS  Google Scholar 

  60. T. Yoshida, K. Suzuki, Phys. Rev. D 94, 074043 (2016)

    Article  ADS  Google Scholar 

  61. J. Alford, M. Strickland, Phys. Rev. D 88, 105017 (2013)

    Article  ADS  Google Scholar 

  62. G. Endrödi, JHEP 04, 023 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  63. K. Fukushima, Y. Hidaka, Phys. Rev. Lett. 117(10), 102301 (2016)

    Article  ADS  Google Scholar 

  64. A. Deur, S.J. Brodsky, G.F. de Teramond, Nucl. Phys. 90, 1 (2016)

    Google Scholar 

  65. F. Karsch, K. Redlich, A. Tawfik, Eur. Phys. J. C 29, 549–556 (2003)

    Article  ADS  Google Scholar 

  66. H.T. Ding et al., [HotQCD] Phys. Rev. Lett. 123(6), 062002 (2019)

    Article  ADS  Google Scholar 

  67. P. A. Zyla et al. [Particle Data Group], PTEP, 2020(8), 083C01 (2020)

  68. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 79, 114029 (2009)

    Article  ADS  Google Scholar 

  69. For a review, e.g., G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, T. Takatsuka, Rept. Prog. Phys. 81(5), 056902 (2018)

  70. For a short review, e.g., T. Kojo, AAPPS Bull. 31(1), 11 (2021)

  71. T. Kojo, Phys. Rev. D 104(7), 074005 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  72. T. Kojo and D. Suenaga. arXiv:2110.02100 [hep-ph]

  73. T. Kunihiro, T. Hatsuda, Phys. Lett. B 240, 209–214 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank H.-T. Ding for useful discussions on the meson spectra and the lattice data, and G. Endrődi for the lattice data and explanations for it. This work is supported by NSFC grant No. 11875144.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Carsten Urbach.

A Some calculations

A Some calculations

1.1 A.1 (\(\hat{ \mathbf {\varPi }}^2, \hat{\mathbf {{\mathcal {K}}}}^2\)) in creation and annihilation operators

When we evaluate 2D vectors such as \(\hat{\mathbf {r}}_\perp \) and \(\hat{\mathbf {p}}_\perp \) operators, it is more convenient to work with an algebraic method. We define two sets of the creation-annihilation operators, (\( \hat{\varPi }_\pm = \hat{\varPi }_x \pm \mathrm {i}\hat{\varPi }_y\), \(\hat{ {\mathcal {K}} }_\pm = \hat{ {\mathcal {K}} }_x \pm \mathrm {i}\hat{{\mathcal {K}} }_y\))

$$\begin{aligned} (\hat{a}^\dag , \hat{a} ) = \frac{1}{\, \sqrt{2|eB| } \,} \times \left\{ \begin{array}{l} ~ (\hat{\varPi }_- , \hat{\varPi }_+ ) ~~~~~(eB \ge 0) \\ ~ (\hat{\varPi }_+ , \hat{\varPi }_- ) ~~~~~(eB < 0) \end{array} \right. \end{aligned}$$
(106)

and

$$\begin{aligned} (\hat{b}^\dag , \hat{b} ) = \frac{1}{\, \sqrt{2|eB| } \,} \times \left\{ \begin{array}{l} ~ (\hat{{\mathcal {K}}}_+, \hat{{\mathcal {K}}}_-) ~~~~~(eB \ge 0) \\ ~ (\hat{{\mathcal {K}}}_-, \hat{{\mathcal {K}}}_+) ~~~~~(eB < 0) \end{array} \right. \end{aligned}$$
(107)

where \((\hat{a}, \hat{a}^\dag )\) and \((\hat{b}, \hat{b}^\dag )\) separately satisfy the usual harmonic oscillator algebra,

$$\begin{aligned} \hat{\mathbf {\varPi }}^2 = |eB| ( 2 \hat{a}^\dag \hat{a} + 1 ) ,~~~~ \hat{\mathbf {{\mathcal {K}}}}^2 = |eB| ( 2 \hat{b}^\dag \hat{b} + 1 ) , \end{aligned}$$
(108)

and \(\hat{a}^\dag |n_\varPi , n_{\mathcal {K}} \rangle = \sqrt{n_\varPi +1\,} | n_\varPi +1, n_{\mathcal {K}} \rangle \), etc.

A few more expressions are used for charged mesons discussed in the main text. We note that \(\hat{\mathbf {p}}_\perp = ( \hat{\mathbf {{\mathcal {K}}}} + \hat{\mathbf {\varPi }} )/2\) and \(e \mathbf {B}\times \hat{\mathbf {r}} = \hat{\mathbf {{\mathcal {K}}}} - \hat{\mathbf {\varPi }}\). Finally, using Eq. (14),

$$\begin{aligned} 2 e\mathbf {B}\cdot \mathbf {l}= \hat{ \mathbf {\varPi }}^2 - \hat{ \mathbf {{\mathcal {K}}}}^2 = 2 |eB| \big ( \hat{b}^\dag \hat{b} - \hat{a}^\dag \hat{a} \big ) . \end{aligned}$$
(109)

1.2 A.2 Rearrangement of \(\mathbf {\varPi }_r\)

To compute Eqs. (75) and (78), we note

$$\begin{aligned} \hat{ \tilde{{\varvec{\varPi }}} }_r = \hat{ \mathbf {p}}_r - \frac{1}{\, 2 \,} \mathbf {{\mathcal {B}}} \times \hat{ \mathbf {r}} = \hat{ \mathbf {\varPi }}_r - \frac{1}{\, 2 \,} ( \mathbf {{\mathcal {B}}} - \mathbf {B}) \times \hat{ \mathbf {r}} , \end{aligned}$$
(110)

and \(\hat{ \tilde{\varvec{{\mathcal {K}}}} }_r = \hat{ \tilde{{\varvec{\varPi }}} }_r + \mathbf {{\mathcal {B}}} \times \hat{\mathbf {r}}\). Eliminating \(\mathbf {{\mathcal {B}}} \times \hat{\mathbf {r}}\),

$$\begin{aligned} \hat{ \mathbf {\varPi }}_r= & {} \frac{1}{\, 2 \,} \bigg (1 + \frac{\, B \,}{{\mathcal {B}}} \bigg ) \hat{ \tilde{{\varvec{\varPi }}} }_r + \frac{1}{\, 2 \,} \bigg (1 - \frac{\, B \,}{{\mathcal {B}}} \bigg ) \hat{ \tilde{\varvec{{\mathcal {K}}}}}_r \nonumber \\\equiv & {} f_+ \hat{ \tilde{{\varvec{\varPi }}} }_r + f_- \hat{\tilde{\varvec{{\mathcal {K}}}}} _r. \end{aligned}$$
(111)

The last expression will be used when we evaluate the coupling \(\hat{ \mathbf {\varPi }}_R \cdot \hat{ \mathbf {\varPi }}_r\) which will appear in computations of charged mesons.

1.3 A.3 \(N_{\mathcal {K}}\) and the density of states

We have not discussed any constraints on \(N_{\mathcal {K}}\) (except \(N_{\mathcal {K}} \ge 0\)), which would give an impression that \(N_{\mathcal {K}}\) has no upper bound. At this stage we have to be careful about the counting of the density of states (for the detailed discussions, e.g. Ref. [48]). For this purpose we consider the system size of \(V_2 = \pi R^2\). The momenta \({\mathcal {K}}_R\) characterizes the guiding center of the cyclotron orbit measured from the origin, and its radius is \(|\mathbf {{\mathcal {K}}}_R/B_R | = \sqrt{2 N_{\mathcal {K}}/|B_R|}\) which must be smaller than R. Thus the maximum of \(N_{\mathcal {K}}\) for a given volume \(V_2\) is \(N_{\mathcal {K}}^\mathrm{max} = R^2 |B_R|/2 = V_2 \times | B_R |/2\pi \). Taking this into account, the sum of states per volume is

$$\begin{aligned} \frac{1}{\,V_2 \,} \sum _{ N_{\mathcal {K}} = 0}^{N_{\mathcal {K}}^\mathrm{max} } = \frac{\, |B_R| \,}{\, 2\pi \,} . \end{aligned}$$
(112)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojo, T. Neutral and charged mesons in magnetic fields. Eur. Phys. J. A 57, 317 (2021). https://doi.org/10.1140/epja/s10050-021-00629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00629-y

Navigation