Skip to main content
Log in

Deuteron induced nuclear reactions on Mo up to 10 MeV: experimental investigation and nuclear model calculations

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Cross-sections of deuteron-induced nuclear reactions on natural molybdenum have been studied in the frame of a systematic investigation of charged particle-induced nuclear reactions on some metals for various applications. The excitation functions of \(^{\mathrm{nat}}\)Mo(d,x)\(^{93\mathrm{(m+g)},94\mathrm{m,g},95\mathrm{m,g},96(m+g),99\mathrm{m}}\)Tc were measured up to 10 MeV deuteron energy by using the stacked foil activation technique. This work aimed to get new experimental data useful in accelerator technology, and for testing nuclear reaction models. The integral yield was determined for \(^{99\mathrm{m},96\mathrm{m,g},95\mathrm{m,g},93\mathrm{m,g}}\)Tc, and \(^{99}\)Mo radioisotopes. The experimental data were compared with the results of theoretical calculations obtained by using EMPIRE-3.2.3, and TENDL 2019 codes resulting in moderate agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All our data are presented in this manuscript.]

References

  1. OECD-NEA, The supply of medical radioisotopes: an economic study of the molybdenum-99 supply chain (2010). https://www.oecd-nea.org/med-radio/reports/MO-99.pdf

  2. W. Tucker, M. Greene, A. Weiss, A. Murrenhoff, methods of preparation of some carrier-free radioisotopes involving sorption on alumina, United States (1958). https://doi.org/10.2172/4305138

  3. F. Rösch, S.M. Qaim, Nuclear data relevant to the production of the positron emitting technetium isotope \(^{94{\rm m}}\)Tc via the \(^{94}\)Mo(p, n)-reaction. Radiochim. Acta 62(3), 115–121 (1993). https://doi.org/10.1524/ract.1993.62.3.115

    Article  Google Scholar 

  4. R. J. Nickles, A. D. Nunn, C. K. Stone, B. T. Christian, Technetium-94m-teboroxime: synthesis, dosimetry, and initial PET imaging studies. J. Nucl. Med. 34(7), 1058–1066 (1993). http://www.ncbi.nlm.nih.gov/pubmed/8315479

  5. M. Sajjad, M.L. Richard, Cyclotron production of medical radionuclides. Nucl. Instrum. Methods B 79(1–4), 911–915 (1993). https://doi.org/10.1016/0168-583X(93)95497-S

    Article  ADS  Google Scholar 

  6. F. Rösch, A.F. Novgorodov, S.M. Qaim, Thermochromatographic separation of \(^{94{\rm m}}\)Tc from enriched molybdenum targets and its large scale production for nuclear medical application. Radiochim. Acta 64(2), 113–120 (1994). https://doi.org/10.1524/ract.1994.64.2.113

    Article  Google Scholar 

  7. S.M. Qaim, Production of high purity 94mTc for positron emission tomography studies. Nucl. Med. Biol. 27(4), 323–328 (2000). https://doi.org/10.1016/S0969-8051(00)00104-9

    Article  Google Scholar 

  8. A. Hohn, K. Zimmermann, E. Schaub, W. Hirzel, P. A. Schubiger, R. Schibli, Production and separation of “non-Standard” PET nuclides at a large cyclotron facility: the experiences at the paul scherrer institute in Switzerland. J. Nucl. Med. and Mol. Imag. 52(2), 145–150 (2008). http://europepmc.org/abstract/MED/18174878

  9. S.M. Qaim, Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochimica Acta 99(10), 611–625 (2011). https://doi.org/10.1524/ract.2011.1870

    Article  Google Scholar 

  10. S. Takács, F. Tárkányi, M. Sonck, A. Hermanne, Investigation of the \(^{Nat}\)Mo(p, x)\(^{96{\rm m, g}}\)Tc nuclear reaction to monitor proton beams: new measurements and consequences on the earlier reported data. Nucl. Instr. Meth. Phys. Res. B 198(3–4), 183–196 (2002). https://doi.org/10.1016/S0168-583X(02)01528-8

    Article  ADS  Google Scholar 

  11. S. Takács, A. Hermanne, F. Ditrói, F. Tárkányi, M. Aikawa, Reexamination of cross sections of the \(^{100}\)Mo(p,2n)\(^{99{\rm m}}\)Tc reaction. Nucl. Instrum. Methods Phys. Res. Sect. B 347, 26–38 (2015). https://doi.org/10.1016/j.nimb.2015.01.056

    Article  ADS  Google Scholar 

  12. R. M. Lambrecht, S. M. Montner, Production and radiochemical separation of \(^{92}\)Tc and \(^{93}\)Tc for PET. J. Label. Comp. Radiopharm. 19 (11–12), 1434–1435 (1982). https://inis.iaea.org/search/search.aspx?orig_q=RN:14778368

  13. National Research Council (US) Committee on medical isotope production without highly enriched uranium. Washington (DC): National Academies Press (US); (2009). https://doi.org/10.17226/12569. Available at https://www.ncbi.nlm.nih.gov/books/NBK215149/

  14. J.R. Ballinger, \(^{99}\)Mo shortage in nuclear medicine: crisis or challenge? J. Label. Comp. Radiopharm. 53(4), 167–168 (2010)

    Google Scholar 

  15. T. Ruth, Accelerating production of medical isotopes. Nature 457(7229), 536–537 (2009)

    Article  ADS  Google Scholar 

  16. A. Elbinawi, M. Al-abyad, I. Bashter, U. Seddik, F. Ditrói, Study of proton induced nuclear reactions on molybdenum: cross section measurements and theoretical calculations. Radiochimica Acta 108(1), 1–9 (2019). https://doi.org/10.1515/ract-2018-3091

    Article  Google Scholar 

  17. F. Tárkányi, F. Ditrói, S. Takács, B. Király, A. Hermanne, M. Sonck, M. Baba, A.V. Ignatyuk, Investigation of activation cross-sections of deuteron induced nuclear reactions on natural Mo up to 50 MeV. Nucl. Instrum. Methods Phys. Res. Sect. B 274, 1–25 (2012). https://doi.org/10.1016/j.nimb.2011.11.037

    Article  ADS  Google Scholar 

  18. P. Chodash, C.T. Angell, J. Benitez, E.B. Norman, M. Pedretti, H. Shugart, E. Swanberg, R. Yee, Measurement of excitation functions for the \(^{Nat}\)Mo(d, x)\(^{99}\)Mo and \(^{{\rm nat}}\)Mo(p, x)\(^{99}\)Mo reactions. Appl. Radiat. Isot. 69(10), 1447–1452 (2011). https://doi.org/10.1016/j.apradiso.2011.05.013

    Article  Google Scholar 

  19. O. Lebeda, M. Fikrle, New measurement of excitation functions for (d, x) reactions on \(^{{\rm nat}}\)Mo with special regard to the formation of \(^{95{\rm m}}\)Tc, \(^{96{\rm m+g}}\)Tc, \(^{99{\rm m}}\)Tc, and \(^{99}\)Mo. Appl. Radiat. Isot. 68(12), 2425–2432 (2010). https://doi.org/10.1016/j.apradiso.2010.07.007

    Article  Google Scholar 

  20. M. Sonck, S. Takaìcs, F. Szelecseìnyi, A. Hermanne, F. Taìrkaìnyi, “Excitation functions of deuteron induced nuclear reactions on \(^{Nat}\)Mo and \(^{100}\)Mo (90%) up to 50 MeV: an alternative route for the production of \(^{99}\)Mo. In AIP Conference Proceedings, 987–990 (1998). https://doi.org/10.1063/1.59315

  21. Z. Wenrong, Y. Weixiang, H. Xiaogang, L. Hanlin, Excitation functions of reactions from d\(+\)Ti, d\(+\)Mo, p\(+\)Ti and p\(+\)Mo. Communication of nuclear data progress No.19, China Nuclear Data Center, 17–20 (1998). https://inis.iaea.org/collection/NCLCollectionStore/_Public/30/031/30031241.pdf

  22. M. Sonck, A. Hermanne, S. Takacs, F. Szelecsenyi, F. Tarkanyi, Excitation functions of deuteron induced nuclear reactions on \(^{Nat}\)Mo up to 21 MeV: an alternative route for the production of \(^{94{\rm m},99{\rm m}}\)Tc, and \(^{99}\)Mo. In Second International Conference on Isotopes Conference Proceedings, 273. Australia. (1997). http://inis.iaea.org/search/search.aspx?orig_q=RN:29057294

  23. W. U. Sheng, L. Xianguan, P. Xiufeng, Ho Fuqing, Liu Mantian, Excitation functions for Mo(d,x)\(^{95{\rm m}}\)Tc,Mo(d,x)\(^{96{\rm g}}\)Tc and Mo(d,x)\(^{97{\rm m}}\)Tc reactions. Chin. Phys. C, 15(9), 827–831 (1991). http://hepnp.ihep.ac.cn/article/id/350ec540-9453-4da3-a2c1-64508d9f9a72

  24. Z. Řanda, K. Svoboda, Excitation functions and yields of (d, \(\alpha )\) reaction on natural molybdenum up to the Deuteron energy of 13 MeV. Int. J. Appl. Radiat. Isotopes 28(6), 555–559 (1977). https://doi.org/10.1016/0020-708X(77)90035-7

    Article  Google Scholar 

  25. Z. Řanda, K. Svoboda, Excitation functions and yields of the (d, p) reactions on natural molybdenum for Deuteron energies less than 13 MeV. J. Inorgan. Nucl. Chem. 39(12), 2121–2123 (1977). https://doi.org/10.1016/0022-1902(77)80377-1

    Article  Google Scholar 

  26. Z. Řanda, K. Svoboda, Excitation functions and yields of (d, n) and (d, 2n) reactions on natural molybdenum. J. Inorgan. Nucl. Chem. 38(12), 2289–2295 (1976). https://doi.org/10.1016/0022-1902(76)80213-8

    Article  Google Scholar 

  27. F. Tárkányi, A. Hermanne, S. Takács, M. Sonck, Z. Szűcs, B. Király, A.V. Ignatyuk, Investigation of alternative production routes of \(^{99{\rm m}}\)Tc: Deuteron induced reactions on \(^{100}\)Mo. Appl. Radiat. Isotop. 69(1), 18–25 (2011). https://doi.org/10.1016/j.apradiso.2010.08.006

    Article  Google Scholar 

  28. P. P. Zarubin, V. Y. Padalko, Y. V. Khrisanfov, P. P. Lebedev, Y. N. Podkopaev, Excitation functions of the reactions \(^{98}\)Mo\(+\)d. Izv. Akad. Nauk SSSR, Ser. Fiz. 42, 2386-2389. Available in English Version in Bull. Acad. Sci. USSR, Phys. Ser. Vol. 42, 1978. p.145. (1978)

  29. Alexandrov, Y. A., M. V. Aprelev, P. P. Zarubin, V. Y. Padalko, Y. N. Podkopaev, Y. V. Khrisanfov. “Excitation functions for the ground states of \(^{95}\)Tc and \(^{94}\)Tc in (d,n) and (d,2n) reactions.” Izv. Akad. Nauk SSSR, Ser. Fiz. 39, 2127–2130. Available in English Version in Bull. Acad. Sci. USSR, Phys. Ser. Vol. 39, 1975, p. 103 (1975)

  30. R. L. Wolke, Report TID 21525. Contract AT (30-1), 2771 (1965)

  31. IAEA, FENDL-3.0: Fusion evaluated nuclear data library Ver.3.0. International Atomic Energy Agency, Nuclear Data Service. IAEA, Vienna (2015). https://www-nds.iaea.org/fendl30/data/deuteron. Accessed 11 Jan 2021

  32. R.A. Forrest, J. Kopecky, The activation system EASY-2007. J. Nucl. Mater. 386, 878–81 (2009)

    Article  ADS  Google Scholar 

  33. F. Tárkányi, S. Takács, K. Gul, A. Hermanne, M.G. Mustafa, M. Nortier, P. Obložinský, S. Qaim, B. Scholten, Y.N. Shubin, vol. 49 (Vienna, 2001)

  34. S. Qaim, Nuclear data relevant to cyclotron produced short-lived medical radioisotopes. Radiochimica Acta 30, 147–162 (1982)

    Google Scholar 

  35. S. Qaim, M.G. Stöcklin, R. Weinreich, Excitation functions for the formation of neutron deficient isotopes of bromine and krypton via high-energy Deuteron induced reactions on bromine: production of \(^{77}\)Br, \(^{76}\)Br and \(^{79}\)Kr. Int. J. Appl. Radiat. Isotopes 28, 947–953 (1977). https://doi.org/10.1016/0020-708X(77)90059-X

    Article  Google Scholar 

  36. E.A. Hamacher, A cyclotron beam current integrator and recorder. Rev. Sci. Instrum. 17(10), 364–368 (1946). https://doi.org/10.1063/1.1770398

    Article  ADS  Google Scholar 

  37. H. H. Andersen, J. F. Ziegler, Hydrogen stopping powers and ranges in all elements. The stopping and ranges of ions in matter, Volume 3. Pergamon Press, New York (1977). https://trove.nla.gov.au/work/11158033?q&versionId=13069909

  38. J. F Ziegler, J. P. Biersack, The stopping and range of ions in matter. In treatise on heavy-ion science, 93–129. Boston: Springer US (1985). https://doi.org/10.1007/978-1-4615-8103-1_3

  39. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter. Nucl. Instrume. Methods B. 268(11–12), 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  ADS  Google Scholar 

  40. A. Hermanne, A.V. Ignatyuk, R. Capote, B.V. Carlson, J.W. Engle, M.A. Kellett, T. Kibédi, G. Kim, F.G. Kondev, M. Hussain, O. Lebeda, A. Luca, Y. Nagai, H. Naik, A.L. Nichols, F.M. Nortier, S.V. Suryanarayana, S. Takacs, F.T. Tarkanyi, M. Verpelli, Reference cross sections for charged-particle monitor reactions. Nucl. Data Sheets 148, 338–382 (2018). https://doi.org/10.1016/j.nds.2018.02.009

    Article  ADS  Google Scholar 

  41. Brookhaven, National Nuclear Data Center (NNDC). NuDat 2.8 Database. http://www.nndc.bnl.gov/nudat2/

  42. R. B. Firestone, Table of Isotopes. Edited by Coral, M.Baglin. 8th ed. New York: John Wiley and Sons, Inc. (1999)

  43. B. Pritychenko, A. Sonzogni, Q Value Calculator (QCalc) (2016) http://www.nndc.bnl.gov/qcalc/.2016

  44. M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, Xu, Xing, The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C High Energy Phys. Nucl. Phys. 41(3) (2017). https://doi.org/10.1088/1674-1137/41/3/030003

  45. W. J. Huang, M. Wang, F. G. Kondev, G. Audi, S. Naimi, The AME2020 atomic mass evaluation. Chin. Phys. C 45(3) (2021)

  46. JCGM 100. Guide to the expression of uncertainty in measurement-evaluation of measurement data. In: 1\(^{st}\)-ed. Vol. 100. (2008). https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

  47. M. Herman, R. Capote, B.V.V. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke, V. Zerkin, EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 108(12), 2655–2715 (2007). https://doi.org/10.1016/j.nds.2007.11.003

    Article  ADS  Google Scholar 

  48. A.J. Koning, D. Rochman, Modern nuclear data evaluation with the TALYS code system. Nucl. Data Sheets 113(12), 2927–2934 (2012). https://doi.org/10.1016/j.nds.2012.11.002

    Article  Google Scholar 

  49. EXFOR. 2020. IAEA. 2020. https://www-nds.iaea.org/exfor/exfor.htm

  50. M. Sonck, A. Hermanne, S. Takacs, F. Szelecsenyi, F. Tarkanyi, Excitation functions of deuteron induced nuclear reactions on \(^{{\rm nat}}\)Mo up to 21 MeV: an alternative route for the production of \(^{99{\rm m}}\)Tc and \(^{99}\)Mo (IAEA-TECDOC-1065). International Atomic Energy Agency (1999). http://inis.iaea.org/search/search.aspx?orig_q=RN:30013602

  51. M. Avrigeanu, V. Avrigeanu, Role of breakup and direct processes in deuteron-induced reactions at low energies. Phy. Rev. C 92, 021601(R) (2015). https://doi.org/10.1103/PhysRevC.92.021601

    Article  ADS  Google Scholar 

  52. M. Avrigeanu, E. Šimečková, U. Fischer, J. Mrázek, J. Novak, M. Štefánik, C. Costache, V. Avrigeanu, Deuteron-induced reactions on Ni isotopes up to 60 MeV. Phys. Rev. C 94, 014606 (2016). https://doi.org/10.1103/PhysRevC.94.014606

    Article  ADS  Google Scholar 

  53. A.P.D. Ramirez, A.V. Voinov, S.M. Grimes, A. Schiller, C.R. Brune, T.N. Massey, A. Salas-Bacci, Nuclear level densities of 64,66Zn from neutron evaporation. Phys. Rev. C 88, 064324 (2013). https://doi.org/10.1103/PhysRevC.88.064324

    Article  ADS  Google Scholar 

  54. L. Wolfenstein, Conservation of angular momentum in the statistical theory of nuclear reactions. Phys. Rev. 82, 690 (1951). https://doi.org/10.1103/PhysRev.82.690

    Article  ADS  MATH  Google Scholar 

  55. W. Hauser, H. Feshbach, The inelastic scattering of neutrons. Phys. Rev. 87, 366 (1952). https://doi.org/10.1103/PhysRev.87.366

    Article  ADS  MATH  Google Scholar 

  56. Table Curve 2D, Version 5.01, AISN Software Inc. Since January 2004, Table Curve has been distributed by Systat Software Inc., San Jose, California (2002)

  57. G. Potel, G. Perdikakis, B.V. Carlson, M.C. Atkinson, W.H. Dickhoff, J.E. Escher, M.S. Hussein, J. Lei, W. Li, A.O. Macchiavelli, A.M. Moro, F.M. Nunes, S.D. Pain, J. Rotureau, Toward a complete theory for predicting inclusive deuteron breakup away from stability. Eur. Phys. J. A 53, 178 (2017). https://doi.org/10.1140/epja/i2017-12371-9

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehan Y. Mohamed.

Additional information

Communicated by Alessia Di Pietro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbinawi, A., Ali, B.M., Mohamed, G.Y. et al. Deuteron induced nuclear reactions on Mo up to 10 MeV: experimental investigation and nuclear model calculations. Eur. Phys. J. A 57, 312 (2021). https://doi.org/10.1140/epja/s10050-021-00617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00617-2

Navigation