Skip to main content
Log in

Enhanced yield ratio of light nuclei in heavy ion collisions with a first-order chiral phase transition

  • Regular Article
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Using a transport model that includes a first-order chiral phase transition between the partonic and the hadronic matter, we study the development of density fluctuations in the matter produced in heavy ion collisions as it undergoes the phase transition, and their time evolution in later hadronic stage of the collisions. With the production of deuterons and tritons described by the coalescence model from nucleons at kinetic freeze out, we find that the yield ratio \( N_\text {t}N_\text {p}/ N_\text {d}^2\), where \(N_\text {p}\), \(N_\text {d}\), and \(N_\text {t}\) are, respectively, the proton, deuteron, and triton numbers, is enhanced if the evolution trajectory of the produced matter in the QCD phase diagram passes through the spinodal region of a first-order chiral phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data from theoretical simulations are available upon request.]

References

  1. E.V. Shuryak, Phys. Rept. 61, 71 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Braun-Munzinger, V. Koch, T. Schaefer, J. Stachel, Phys. Rept. 621, 76 (2016)

    Article  ADS  Google Scholar 

  3. A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, N. Xu, Phys. Rept. 853, 1 (2020)

    Article  ADS  Google Scholar 

  4. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006)

    Article  ADS  Google Scholar 

  5. M. Asakawa, K. Yazaki, Nucl. Phys. A 504, 668 (1989)

    Article  Google Scholar 

  6. K. Fukushima, Phys. Rev. D 77, 114028 (2008a), [Erratum: Phys. Rev. D 78, 039902(2008)]

  7. M. A. Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004), [Int. J. Mod. Phys.A20,4387(2005)]

  8. I.N. Mishustin, Phys. Rev. Lett. 82, 4779 (1999)

    Article  ADS  Google Scholar 

  9. P. Chomaz, M. Colonna, J. Randrup, Phys. Rept. 389, 263 (2004)

    Article  ADS  Google Scholar 

  10. C. Sasaki, B. Friman, K. Redlich, Phys. Rev. Lett. 99, 232301 (2007)

    Article  ADS  Google Scholar 

  11. J. Steinheimer, J. Randrup, Phys. Rev. Lett. 109, 212301 (2012)

    Article  ADS  Google Scholar 

  12. C. Herold, M. Nahrgang, I. Mishustin, M. Bleicher, Nucl. Phys. A 925, 14 (2014)

    Article  ADS  Google Scholar 

  13. F. Li, C.M. Ko, Phys. Rev. C 95, 055203 (2017)

    Article  ADS  Google Scholar 

  14. M. Nahrgang, C. Herold, Eur. Phys. J. A 52, 240 (2016)

    Article  ADS  Google Scholar 

  15. J. Steinheimer, L. Pang, K. Zhou, V. Koch, J. Randrup, H. Stoecker, JHEP 12, 122 (2019)

    Article  ADS  Google Scholar 

  16. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. Lett. 81, 4816 (1998)

    Article  ADS  Google Scholar 

  17. M.A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011)

    Article  ADS  Google Scholar 

  18. B. Berdnikov, K. Rajagopal, Phys. Rev. D 61, 105017 (2000)

    Article  ADS  Google Scholar 

  19. M. Asakawa, M. Kitazawa, B. Mueller, Phys. Rev. C 101, 034913 (2020)

    Article  ADS  Google Scholar 

  20. X. Luo, S. Shi, N. Xu, Y. Zhang, Particles 3, 278 (2020)

    Article  Google Scholar 

  21. L.-G. Pang, K. Zhou, N. Su, H. Petersen, H. Stoecker, X.-N. Wang, Nat. Commun. 9, 210 (2018)

    Article  ADS  Google Scholar 

  22. Y.-L. Du, K. Zhou, J. Steinheimer, L.-G. Pang, A. Motornenko, H.-S. Zong, X.-N. Wang, H. Stocker, Eur. Phys. J. C 80, 516 (2020)

    Article  ADS  Google Scholar 

  23. M.A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009)

    Article  ADS  Google Scholar 

  24. J. Adam et al., STAR. Phys. Rev. Lett. 126, 092301 (2021)

  25. J. Steinheimer, J. Randrup, V. Koch, Phys. Rev. C 89, 034901 (2014)

    Article  ADS  Google Scholar 

  26. K.-J. Sun, L.-W. Chen, C.M. Ko, Z. Xu, Phys. Lett. B 774, 103 (2017)

    Article  ADS  Google Scholar 

  27. K.-J. Sun, L.-W. Chen, C.M. Ko, J. Pu, Z. Xu, Phys. Lett. B 781, 499 (2018)

    Article  ADS  Google Scholar 

  28. E. Shuryak, J.M. Torres-Rincon, Phys. Rev. C 100, 024903 (2019a)

    Article  ADS  Google Scholar 

  29. E. Shuryak, J. M. Torres-Rincon Phys. Rev. C 101, 034914 (2019)

  30. T. Anticic et al., NA49. Phys. Rev. C 94, 044906 (2016)

    Article  ADS  Google Scholar 

  31. D. Zhang (STAR), Nucl. Phys. A 1005, 121825 (2021)

  32. M. Nahrgang, PoS CPOD2014, 032 (2015)

  33. M. Bluhm et al., Nucl. Phys. A 1003, 122016 (2020)

    Article  Google Scholar 

  34. K. Murase, T. Hirano, Nucl. Phys. A 956, 276 (2016)

    Article  ADS  Google Scholar 

  35. M. Nahrgang, M. Bluhm, T. Schaefer, S. Bass, Acta Phys. Polon. Supp. 10, 687 (2017)

    Article  Google Scholar 

  36. M. Singh, C. Shen, S. McDonald, S. Jeon, C. Gale, Nucl. Phys. A 982, 319 (2019)

    Article  ADS  Google Scholar 

  37. Y. Akamatsu, A. Mazeliauskas, D. Teaney, Phys. Rev. C 95, 014909 (2017)

    Article  ADS  Google Scholar 

  38. X. An, G. Basar, M. Stephanov, H.-U. Yee, Phys. Rev. C 100, 024910 (2019)

    Article  ADS  Google Scholar 

  39. M. Stephanov, Y. Yin, Phys. Rev. D 98, 036006 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  40. K. Rajagopal, G. Ridgway, R. Weller, Y. Yin, Phys. Rev. D 102, 094025 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Nahrgang, M. Bluhm, T. Schaefer, S.A. Bass, Phys. Rev. D 99, 116015 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  42. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961a)

    Article  ADS  Google Scholar 

  43. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961b)

    Article  ADS  Google Scholar 

  44. C.M. Ko, T. Song, F. Li, V. Greco, S. Plumari, Nucl. Phys. A 928, 234 (2014)

    Article  ADS  Google Scholar 

  45. J. Xu, T. Song, C.M. Ko, F. Li, Phys. Rev. Lett. 112, 012301 (2014)

    Article  ADS  Google Scholar 

  46. Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005)

    Article  ADS  Google Scholar 

  47. B.-A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)

    Article  ADS  Google Scholar 

  48. K.-J. Sun, C.M. Ko, Z.-W. Lin, Phys. Rev. C 103, 064909 (2021)

    Article  ADS  Google Scholar 

  49. K. Fukushima, Phys. Rev. D 77, 114028 (2008b)

    Article  ADS  Google Scholar 

  50. F. Li, C.M. Ko, Phys. Rev. C 93, 035205 (2016)

    Article  ADS  Google Scholar 

  51. M. Buballa, Phys. Rept. 407, 205 (2005a)

    Article  ADS  Google Scholar 

  52. G. ’t Hooft, Phys. Rev. D 14, 3432 (1976)

  53. M. Buballa, Phys. Rept. 407, 205 (2005b)

  54. K. Masuda, T. Hatsuda, T. Takatsuka, PTEP 2013, 073D01 (2013)

  55. U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991)

    Article  ADS  Google Scholar 

  56. N.M. Bratovic, T. Hatsuda, W. Weise, Phys. Lett. B 719, 131 (2013)

    Article  ADS  Google Scholar 

  57. M.F.M. Lutz, S. Klimt, W. Weise, Nucl. Phys. A 542, 521 (1992)

  58. X.-Y. Xin, S.-X. Qin, Y.-X. Liu, Phys. Rev. D 90, 076006 (2014)

    Article  ADS  Google Scholar 

  59. C.S. Fischer, J. Luecker, C.A. Welzbacher, Phys. Rev. D 90, 034022 (2014)

    Article  ADS  Google Scholar 

  60. W.-J. Fu, J.M. Pawlowski, F. Rennecke, Phys. Rev. D 101, 054032 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  61. F. Gao, J.M. Pawlowski, Phys. Rev. D 102, 034027 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  62. J. Grefa et al., Phys. Rev. D 104, 034002 (2021)

  63. C.M. Ko, Q. Li, R.-C. Wang, Phys. Rev. Lett. 59, 1084 (1987)

    Article  ADS  Google Scholar 

  64. C.-M. Ko, Q. Li, Phys. Rev. C 37, 2270 (1988)

    Article  ADS  Google Scholar 

  65. A. Buck, R. Alkofer, H. Reinhardt, Phys. Lett. B 286, 29 (1992)

    Article  ADS  Google Scholar 

  66. C.-Y. Wong, Phys. Rev. C 25, 1460 (1982)

    Article  ADS  Google Scholar 

  67. G. Bertsch, S. Das Gupta, Phys. Rept. 160, 189 (1988)

  68. J. Aichelin, Phys. Rept. 202, 233 (1991)

    Article  ADS  Google Scholar 

  69. P. Rehberg, S.P. Klevansky, J. Hufner, Phys. Rev. C 53, 410 (1996)

    Article  ADS  Google Scholar 

  70. A. Abada, J. Aichelin, Phys. Rev. Lett. 74, 3130 (1995)

    Article  ADS  Google Scholar 

  71. R. Marty, J. Aichelin, Phys. Rev. C 87, 034912 (2013)

    Article  ADS  Google Scholar 

  72. G. Ropke, Phys. Rev. C 79, 014002 (2009)

    Article  ADS  Google Scholar 

  73. K.-J. Sun, L.-W. Chen, Phys. Lett. B 751, 272 (2015)

    Article  ADS  Google Scholar 

  74. K.-J. Sun, L.-W. Chen, Phys. Rev. C 95, 044905 (2017)

    Article  ADS  Google Scholar 

  75. G. Röpke, D. Blaschke, Y.B. Ivanov, I. Karpenko, O.V. Rogachevsky, H.H. Wolter, Phys. Part. Nucl. Lett. 15, 225 (2018)

    Article  Google Scholar 

  76. M. Asakawa, M. Kitazawa, Prog. Part. Nucl. Phys. 90, 299 (2016)

    Article  ADS  Google Scholar 

  77. P.A.R. Ade et al., Planck. Astron. Astrophys. 571, A1 (2014)

  78. D. Baumann, in Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, USA, 1–26 2009, pp. 523–686 (2011)

  79. C. Herold, M. Nahrgang, I. Mishustin, M. Bleicher, Phys. Rev. C 87, 014907 (2013)

    Article  ADS  Google Scholar 

  80. H. Liu, D. Zhang, S. He, N. Yu, X. Luo, Phys. Lett. B 805, 135452 (2020)

    Article  Google Scholar 

  81. W. Zhao, C. Shen, C.M. Ko, Q. Liu, H. Song, Phys. Rev. C 102, 044912 (2020)

    Article  ADS  Google Scholar 

  82. J. Adam et al., STAR. Phys. Rev. C 99, 064905 (2019)

  83. D. Zhang (STAR), JPS Conf. Proc. 32, 010069 (2020)

  84. E. Shuryak, J. M. Torres-Rincon (2020)

  85. K.-J. Sun, C.-M. Ko, S. Cao, F. Li, Phys. Rev. D 103, 014006 (2021)

    Article  ADS  Google Scholar 

  86. D. Oliinychenko, L.-G. Pang, H. Elfner, V. Koch, Phys. Rev. C 99, 044907 (2019)

    Article  ADS  Google Scholar 

  87. D. Oliinychenko, Nucl. Phys. A 1005, 121754 (2021)

    Article  Google Scholar 

  88. W. H. Zhou, H. Liu, F. Li, Y. F. Sun, J. Xu, C. M. Ko, Phys. Rev. C 104, 044901(2021)

Download references

Acknowledgements

The ECT* Trento has supported this work and this infrastructure is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant Agreement No 824093. One of the authors K.J.S. thanks Jorgan Randrup and Xiao-Feng Luo for helpful discussions. This work was supported in part by the US Department of Energy under Contract No.DE-SC0015266, the Welch Foundation under Grant No. A-1358, the National Natural Science Foundation of China under Grant No. 11922514 and No. 11625521, and National SKA Program of China No. 2020SKA0120300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Jia Sun.

Additional information

Communicated by David Blaschke.

Appendix A: Density fluctuations and light nuclei production in the thermal model

Appendix A: Density fluctuations and light nuclei production in the thermal model

In the conventional thermal model for particle production in relativistic heavy ion collisions, the produced matter is assumed to be in global thermal and chemical equilibrium and to have a uniform density distribution. The effect of density fluctuations can be included in this model by assuming that the produced matter is in local thermal and chemical equilibrium with a space dependent temperature \(T(\mathbf{x})\) and chemical potential \(\mu (\mathbf{x})\). For the simplified case of a constant temperature, the nucleon number density is given by

$$\begin{aligned} \rho _{n,p}(\mathbf{x})= & {} \frac{2}{(2\pi )^3}4\pi Tm^2K_2\left( \frac{m}{T}\right) \text {e}^{\frac{\mu _{n,p}(\mathbf{x})}{T}}, \end{aligned}$$
(A1)

where \(K_2\) is the modified Bessel function of second kind and \(\mu _{n,p}(\mathbf{x})\) denotes the space dependent chemical potentials for neutron and proton. Assuming that deuterons and tritons are in local thermal and chemical equilibriums with the nucleons, their number densities in this model are then

$$\begin{aligned} \rho _{d}(\mathbf{x})= \frac{3}{(2\pi )^3}4\pi T(2m)^2K_2\left( \frac{2m}{T}\right) \text {e}^{\frac{\mu _{n}(\mathbf{x})+\mu _{p}(\mathbf{x})}{T}}, \nonumber \\ \rho _{t}(\mathbf{x})= \frac{2}{(2\pi )^3}4\pi T(3m)^2K_2\left( \frac{3m}{T}\right) \text {e}^{\frac{2\mu _{n}(\mathbf{x})+\mu _{p}(\mathbf{x})}{T}}. \end{aligned}$$
(A2)

The yield ratio \(\mathcal {O}_{\text {p-d-t}}= N_\text {t}N_\text {p}/N_\text {d}^2 \) can be calculated in the non-relativistic approximation as

$$\begin{aligned} \mathcal {O}_{\text {p-d-t}}= & {} \frac{K_2(\frac{m}{T})K_2(\frac{3m}{T})}{4(K_2(\frac{2m}{T}))^2} \frac{\int \text {d}^3\mathbf{{x}}\rho _{p} \int \text {d}^3\mathbf{x}\rho _n^2\rho _p}{[\int \text {d}^3\mathbf{x}\rho _n\rho _p]^2} \nonumber \\\approx & {} \frac{1}{2\sqrt{3}}\frac{\int \text {d}^3\mathbf{{x}}\rho _{p} \int \text {d}^3\mathbf{x}\rho _n^2\rho _p}{[\int \text {d}^3\mathbf{x}\rho _n\rho _p]^2}\nonumber \\\approx & {} \frac{1}{2\sqrt{3}} \frac{1+2C_\text {np}+\Delta \rho _n}{(1+C_\text {np})^2}. \end{aligned}$$
(A3)

which is identical to Eq. (23) obtained from the nucleon coalescence model. Density fluctuations thus affect the yield ratio \(N_\text {t}N_\text {p}/N_\text {d}^2 \) similarly in both the coalescence and the thermal model.

The above derivation is based on the assumption that the local chemical equilibrium among protons, deuterons, and tritons is maintained from chemical freeze out until kinetic freeze out as a result of the large production and dissociation cross sections of deuterons and tritons during the hadronic evolution [86]. If one assumes instead that the yields of deuterons and tritons produced at the chemical freeze out of identified hadrons remain unchanged during hadronic evolution as assumed in usual statistical hadronization model, there is an additional factor in Eq. (A3) from the contribution of resonance decays to protons  [87].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, KJ., Ko, C.M., Li, F. et al. Enhanced yield ratio of light nuclei in heavy ion collisions with a first-order chiral phase transition. Eur. Phys. J. A 57, 313 (2021). https://doi.org/10.1140/epja/s10050-021-00607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00607-4

Navigation