Skip to main content
Log in

A description of the structure and electromagnetic breakup of \(^{11}\)Be with microscopic inputs

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study both the static properties of \(^{11}\)Be and its reaction dynamics during electromagnetic breakup under a unified framework. A many-body approach—the antisymmetrized molecular dynamics (AMD) is used to describe the structure of the neutron-halo nucleus, \(^{11}\)Be. The same AMD wave function is then adapted as an input to the fully quantum theory of Coulomb breakup under the aegis of the finite range distorted wave Born approximation theory. The calculated observables are also compared with those obtained with a phenomenological Woods-Saxon potential model wave function. The experimental core-valence neutron relative energy spectrum and dipole response along with other observables are well described by our calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Queries regarding the calculations should be addressed to the authors.]

Notes

  1. The depth of the new Woods-Saxon potential (WSN) will then be 59.05 MeV.

References

  1. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  2. R. Shubhchintak, Chatterjee, Phys. Rev. C 90, 017602 (2014)

    Article  ADS  Google Scholar 

  3. T. Aumann, T. Nakamura, Phys. Scr. T152, 014012 (2013)

    Article  ADS  Google Scholar 

  4. I. Tanihata et al., Phys. Lett. B 206, 592 (1988)

    Article  ADS  Google Scholar 

  5. W. Nörtershäuser et al., Phys. Rev. Lett. 102, 062503 (2009)

    Article  ADS  Google Scholar 

  6. J.S. Wang et al., Nucl. Phys. A 691, 618 (2001)

    Article  ADS  Google Scholar 

  7. Suhel Ahmed, A.A. Usmani, Z.A. Khan, Phys. Rev. C 96, 064602 (2017)

  8. A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012)

    Article  ADS  Google Scholar 

  9. C. Forssén, E. Caurier, P. Navrátil, Phys. Rev. C 79, 021303 (2009)

    Article  ADS  Google Scholar 

  10. R.E. Warner et al., Phys. Rev. C 64, 044611 (2001)

    Article  ADS  Google Scholar 

  11. P. Capel et al., J. Phys: Conf. Ser. 1023, 012010 (2018)

    Google Scholar 

  12. A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001)

    Article  ADS  Google Scholar 

  13. J. Chambers et al., Phys. Rev. C 50, R2671 (1994)

    Article  ADS  Google Scholar 

  14. Y. Suzuki, K. Ikeda, H. Salto, Prog. Theor. Phys. 83, 180 (1990)

    Article  ADS  Google Scholar 

  15. T. Nakamura et al., Phys. Lett. B 331, 296 (1994)

    Article  ADS  Google Scholar 

  16. T. Nakamura et al., Phys. Rev. Lett. 83, 1112 (1999)

    Article  ADS  Google Scholar 

  17. S. Nakayama et al., Phys. Rev. Lett. 85, 262 (2000)

    Article  ADS  Google Scholar 

  18. R. Kanungo, I. Tanihata, C. Samanta, Prog. Theor. Phys. 102, 1133 (1999)

    Article  ADS  Google Scholar 

  19. C.A. Bertulani, G. Baur, M.S. Hussein, Nucl. Phys. A 526, 751 (1991)

    Article  ADS  Google Scholar 

  20. C.A. Bertulani, A. Sustich, Phys. Rev. C 46, 6 (1992)

    Article  Google Scholar 

  21. S. Goriely, Phys. Lett. B 436, 10 (1998)

    Article  ADS  Google Scholar 

  22. C.A. Bertulani, Eur. Phys. J. A 55, 240 (2019)

    Article  ADS  Google Scholar 

  23. Y. Kanada-En’yo, M. Kimura, H. Horiuchi, C R Phys. 4, 497 (2003)

  24. Y. Kanada-En’yo, M. Kimura, A. Ono, Prog. Theor. Exp. Phys. 2012, 01A202 (2012)

  25. M. Kimura, T. Suhara, Y. Kanada-En’yo, Eur. Phys. J. A 52, 373 (2016)

  26. J.A. Lay, A.M. Moro, J.M. Arias, Phys. Rev. C 89, 014333 (2014)

    Article  ADS  Google Scholar 

  27. R. de Diego et al., Phys. Rev. C 89, 064609 (2014)

    Article  ADS  Google Scholar 

  28. H. Fuchs, Nucl. Instrum. Methods 200, 361 (1982)

    Article  Google Scholar 

  29. R. Chatterjee, R. Shyam, Prog. Part. Nucl. Phys. 103, 67 (2018)

    Article  ADS  Google Scholar 

  30. C.A. Bertulani, G. Baur, Phys. Rep. 163, 299 (1988)

    Article  ADS  Google Scholar 

  31. G. Baur, C.A. Bertulani, H. Rebel, Nucl. Phys. A 458, 188 (1986)

    Article  ADS  Google Scholar 

  32. Manju, J. Singh, Shubhchintak, R. Chatterjee, Eur. Phys. J. A 55, 5 (2019)

  33. J.F. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991)

    Article  ADS  Google Scholar 

  34. H. Homma, M. Isaka, M. Kimura, Phys. Rev. 91, 014314 (2015)

    ADS  Google Scholar 

  35. M. Kimura, Phys. Rev. C 69, 044319 (2004)

    Article  ADS  Google Scholar 

  36. M. Kimura, R. Yoshida, M. Isaka, Prog. Theor. Phys. 127, 287 (2012)

    Article  ADS  Google Scholar 

  37. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)

    Article  ADS  Google Scholar 

  38. K. Minomo, T. Sumi, M. Kimura, K. Ogata, Y.R. Shimizu, M. Yahiro, Phys. Rev. C 84, 034602 (2011)

    Article  ADS  Google Scholar 

  39. K. Minomo, T. Sumi, M. Kimura, K. Ogata, Y.R. Shimizu, M. Yahiro, Phys. Rev. Lett. 108, 052503 (2012)

    Article  ADS  Google Scholar 

  40. T. Sumi, K. Minomo, S. Tagami, M. Kimura, T. Matsumoto, K. Ogata, Y.R. Shimizu, M. Yahiro, Phys. Rev. C 85, 064613 (2012)

    Article  ADS  Google Scholar 

  41. M. Kimura, Phys. Rev. C 95, 034331 (2017)

    Article  ADS  Google Scholar 

  42. W. von Oertzen, M. Freer, Y. Kanada-En’yo, Phys. Rep. 432, 43 (2006)

  43. W. von Oertzen, II Nuovo Cimento A 110, 895 (1997)

    Article  ADS  Google Scholar 

  44. W. von Oertzen, Z. Physik A 357, 355 (1997)

    Article  ADS  Google Scholar 

  45. S. Okabe, Y. Abe, H. Tanaka, Prog. Theor. Phys. 57, 866 (1979)

    Article  ADS  Google Scholar 

  46. Y. Kanada-Enyo, H. Horiuchi, A. Dote, Phys. Rev. C 64, 0564304 (1999)

    Google Scholar 

  47. N. Itagaki, S. Okabe, Phys. Rev. C 61, 044306 (2000)

    Article  ADS  Google Scholar 

  48. N. Itagaki, S. Okabe, K. Ikeda, I. Tanihata, Phys. Rev. C 64, 014301 (2001)

    Article  ADS  Google Scholar 

  49. Y. Kanada-En’yo, H. Horiuchi, Phys. Rev. C 68, 014319 (2003)

  50. T. Neff, H. Feldmeier, R. Roth, Nucl. Phys. A 752, 321 (2005)

    Article  ADS  Google Scholar 

  51. A. Calci, P. Navrátil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, Phys. Rev. Lett. 117, 242501 (2016)

    Article  ADS  Google Scholar 

  52. A. Bonaccorso, F. Cappuzzello, D. Carbone, M. Cavallaro, G. Hupin, P. Navrátil, S. Quaglioni, Phys. Rev. C 100, 024617 (2019)

    Article  ADS  Google Scholar 

  53. H. Esbensen, B.A. Brown, H. Sagawa, Phys. Rev. C 51, 1274 (1995)

    Article  ADS  Google Scholar 

  54. F.M. Nunes, I.J. Thompson, R.C. Johnson, Nucl. Phys. A 596, 171 (1996)

    Article  ADS  Google Scholar 

  55. F. Barranco et al., Phys. Rev. Lett. 119, 082501 (2017)

    Article  ADS  Google Scholar 

  56. R. Chatterjee, P. Banerjee, R. Shyam, Nucl. Phys. A 675, 477 (2000)

    Article  ADS  Google Scholar 

  57. B. Zwieglinski, W. Benenson, R.G.H. Robertson, W.R. Coker, Nucl. Phys. A 315, 124 (1979)

    Article  ADS  Google Scholar 

  58. N. Fukuda et al., Phys. Rev. C 70, 054606 (2004)

    Article  ADS  Google Scholar 

  59. A. Mason, R. Chatterjee, L. Fortunato, A. Vitturi, Eur. Phys. J. A 39, 107 (2009)

    Article  ADS  Google Scholar 

  60. M. Žáková et al., J. Phys. G. 37, 055107 (2010)

    Article  ADS  Google Scholar 

  61. J.S. Al-Khalili, J.A. Tostevin, Phys. Rev. Lett. 76, 3903 (1996)

    Article  ADS  Google Scholar 

  62. R. Anne et al., Nucl. Phys. A 575, 125 (1994)

    Article  ADS  Google Scholar 

  63. A.S. Goldhaber, Phys. Lett. B 53, 306 (1974)

    Article  ADS  Google Scholar 

  64. J.H. Kelly et al., Phys. Rev. Lett. 74, 30 (1995)

    Article  ADS  Google Scholar 

  65. R. Chatterjee, Phys. Rev. C 68, 044604 (2003)

    Article  ADS  Google Scholar 

  66. T. Aumann, T. Nakamura, Phys. Scr. 2013, 014012 (2013)

    Article  Google Scholar 

  67. A.M. Moro, J.A. Lay, J. Gómez Camacho, Phys. Lett. B 811, 135959 (2020)

    Article  Google Scholar 

  68. J.H. Esbensen, G.F. Bertsch, Nucl. Phys. A 542, 310 (1992)

    Article  ADS  Google Scholar 

  69. M.A. Nagarajan, S.M. Lenzi, A. Vitturi, Eur. Phys. J. A 24, 63 (2005)

    Article  ADS  Google Scholar 

  70. S. Typel, G. Baur, Nucl. Phys. A 759, 247 (2005)

    Article  ADS  Google Scholar 

  71. L. Moschini, P. Capel, Phys. Lett. B 790, 367 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scheme for Promotion of Academic and Research Collaboration (SPARC/2018-2019/P309/SL), Ministry of Education, India. M.K. acknowledges the support from JSPS KAKENHI Grant No. 19K03859, the collaborative research programs 2020, Information Initiative Center at Hokkaido University and the COREnet program at the RCNP, Osaka University. M.D. acknowledges a doctoral research fellowship from the Ministry of Education, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chatterjee.

Additional information

Communicated by Cedric Simenel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dan, M., Chatterjee, R. & Kimura, M. A description of the structure and electromagnetic breakup of \(^{11}\)Be with microscopic inputs. Eur. Phys. J. A 57, 203 (2021). https://doi.org/10.1140/epja/s10050-021-00526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00526-4

Navigation