Skip to main content
Log in

Coupled-channel treatment of \({\varvec{^7}}\)Li\({\varvec{(n,\gamma )^8}}\)Li in effective field theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The E1 contribution to the capture reaction \(^7\mathrm {Li}(n,\gamma )^8\mathrm {Li}\) is calculated at low energies. We employ a coupled-channel formalism to account for the \(^7\mathrm {Li}^\star \) excited core contribution. We develop a halo effective field theory power counting where capture in the spin \(S=2\) channel is enhanced over the \(S=1\) channel. A next-to-leading order calculation is presented where the excited core contribution is shown to affect only the overall normalization of the cross section. The momentum dependence of the capture cross section, as a consequence, is the same in a theory with or without the excited \(^7\mathrm {Li}^\star \) degree of freedom at this order of the calculation. The kinematical signature of the \(^7\mathrm {Li}^\star \) core is negligible at momenta below 1 MeV and significant only beyond the \(3^+\) resonance energy, though still compatible with a next-to-next-to-leading order correction. We compare our formalism with a previous halo effective field theory calculation [Zhang et al., Phys. Rev. C 89, 024613 (2014)] that also treated the \(^7\mathrm {Li}^\star \) core as an explicit degree of freedom. Our formal expressions and analysis disagree with this earlier work in several aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: Experimental data is available in the cited references.]

References

  1. M. Wiescher, F. Käppeler, K. Langanke, Annu. Rev. Astron. Astrophys. 50, 165 (2012)

    Article  ADS  Google Scholar 

  2. C.R. Brune, B. Davids, Ann. Rev. Nucl. Part. Sci. 65, 87 (2015)

    Article  ADS  Google Scholar 

  3. C. Bertulani, A. Gade, Phys. Rept. 485, 195 (2010). arXiv:0909.5693 [nucl-th]

    Article  ADS  Google Scholar 

  4. L.H. Kawano, W.A. Fowler, R.W. Kavanagh, R.A. Malaney, Astrophys. J. 372, 1 (1991)

    Article  ADS  Google Scholar 

  5. D.J. Hughes, D. Hall, C. Eggler, E. Goldfarb, Phys. Rev. 72, 646 (1947)

    Article  ADS  Google Scholar 

  6. J.E. Lynn, E.T. Jurney, S. Raman, Phys. Rev. C 44, 764 (1991)

    Article  ADS  Google Scholar 

  7. J.C. Blackmon et al., Phys. Rev. C 54, 383 (1996)

    Article  ADS  Google Scholar 

  8. M. Heil, F. Käppler, M. Wiescher, A. Mengoni, Astrophys. J. 507, 1002 (1998)

    Article  ADS  Google Scholar 

  9. Y. Nagai et al., Phys. Rev. C 71, 055803 (2005)

    Article  ADS  Google Scholar 

  10. R. Izsák et al., Phys. Rev. C 88, 065808 (2013). arXiv:1312.3498 [nucl-ex]

    Article  ADS  Google Scholar 

  11. P. Navratil, R. Roth, S. Quaglioni, Phys. Rev. C 82, 034609 (2010). arXiv:1007.0525 [nucl-th]

    Article  ADS  Google Scholar 

  12. K. Bennaceur, F. Nowacki, J. Okolowicz, M. Ploszajczak, Nucl. Phys. A 651, 289 (1999). arXiv:nucl-th/9901060

    Article  ADS  Google Scholar 

  13. K. Fossez, N. Michel, M. Płoszajczak, Y. Jaganathen, R. Id Betan, Phys. Rev. C 91, 034609 (2015). arXiv:1502.01631 [nucl-th]

  14. P. Descouvemont, D. Baye, Nucl. Phys. A 567, 341 (1994)

    Article  ADS  Google Scholar 

  15. T. Tombrello, Nucl. Phys. 71, 459 (1965)

    Article  Google Scholar 

  16. A. Aurdal, Nucl. Phys. A 146, 385 (1970)

    Article  ADS  Google Scholar 

  17. H. Esbensen, Phys. Rev. C 70, 047603 (2004)

    Article  ADS  Google Scholar 

  18. F.C. Barker, Nucl. Phys. A 768, 241 (2006)

    Article  ADS  Google Scholar 

  19. B. Davids, S. Typel, Phys. Rev. C 68, 045802 (2003). arXiv:nucl-th/0304054

  20. S. Typel, G. Baur, Nucl. Phys. A 759, 247 (2005). arXiv:nucl-th/0411069

    Article  ADS  Google Scholar 

  21. C. Bertulani, Z. Phys, A 356, 293 (1996)

    Article  ADS  Google Scholar 

  22. J.T. Huang, C.A. Bertulani, V. Guimaraes, At. Data Nuc. Data Tables 96, 824 (2010). arXiv:0810.3867 [nucl-th]

    Article  ADS  Google Scholar 

  23. N. Shul’gina, B. Danilin, V. Efros, J. Bang, J. Vaagen, M. Zhukov, Nucl. Phys. A 597, 197 (1996)

    Article  ADS  Google Scholar 

  24. L. Grigorenko, B. Danilin, V. Efros, N. Shul’gina, M. Zhukov, Phys. Rev. C 60, 044312 (1999)

    Article  ADS  Google Scholar 

  25. C. Bertulani, H. Hammer, U. van Kolck, Nucl. Phys. A 712, 37 (2002). arXiv:nucl-th/0205063

    Article  ADS  Google Scholar 

  26. P. Bedaque, H. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003). arXiv:nucl-th/0304007

    Article  ADS  Google Scholar 

  27. G. Rupak, Int. J. Mod. Phys. E 25, 1641004 (2016)

    Article  ADS  Google Scholar 

  28. H.W. Hammer, C. Ji, D. Phillips, J. Phys. G 44, 103002 (2017). arXiv:1702.08605 [nucl-th]

    Article  ADS  Google Scholar 

  29. H.-W. Hammer, S. König, U. van Kolck, Rev. Mod. Phys. 92, 025004 (2020). arXiv:1906.12122 [nucl-th]

    Article  ADS  Google Scholar 

  30. G. Rupak, R. Higa, Phys. Rev. Lett. 106, 222501 (2011). arXiv:1101.0207 [nucl-th]

    Article  ADS  Google Scholar 

  31. L. Fernando, R. Higa, G. Rupak, Eur. Phys. J. A 48, 24 (2012). arXiv:1109.1876 [nucl-th]

    Article  ADS  Google Scholar 

  32. X. Zhang, K.M. Nollett, D. Phillips, Phys. Rev. C 89, 024613 (2014). arXiv:1311.6822 [nucl-th]

    Article  ADS  Google Scholar 

  33. T.D. Cohen, B.A. Gelman, U. van Kolck, Phys. Lett. B 588, 57 (2004). arXiv:nucl-th/0402054

    Article  ADS  Google Scholar 

  34. V. Lensky, M. Birse, Eur. Phys. J. A 47, 142 (2011). arXiv:1109.2797 [nucl-th]

    Article  ADS  Google Scholar 

  35. D. Tilley, J. Kelley, J. Godwin, D. Millener, J. Purcell, C. Sheu, H. Weller, Nucl. Phys. A 745, 155 (2004)

    Article  ADS  Google Scholar 

  36. R. Higa, P. Premarathna, G. Rupak, Under publication

  37. W.J. Huang, G. Audi, M. Wang, F.G. Kondev, S. Naimi, X. Xu, Chin. Phys. C 41, 030002 (2017)

    Article  ADS  Google Scholar 

  38. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  39. H.W. Griesshammer, Nucl. Phys. A 744, 192 (2004). arXiv:nucl-th/0404073

    Article  ADS  Google Scholar 

  40. D. Tilley, C. Cheves, J. Godwin, G. Hale, H. Hofmann, J. Kelley, C. Sheu, H. Weller, Nucl. Phys. A 708, 3 (2002)

    Article  ADS  Google Scholar 

  41. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998). arXiv:nucl-th/9801034

    Article  ADS  Google Scholar 

  42. H. Knox, R. Lane, Nucl. Phys. A 359, 131 (1981)

    Article  ADS  Google Scholar 

  43. L. Koester, K. Knopf, W. Waschkowski, Z. Phys. A 312, 81 (1983)

    Article  ADS  Google Scholar 

  44. L. Trache, A. Azhari, F. Carstoiu, H. Clark, C. Gagliardi, Y. Lui, A. Mukhamedzhanov, X. Tang, N. Timofeyuk, Phys. Rev. C 67, 062801 (2003). arXiv:nucl-ex/0304016

    Article  ADS  Google Scholar 

  45. A. Gul’ko, S. Trostin, A. Hudoklin, Sov. J Nucl. Phys. 6, 477 (1968)

    Google Scholar 

  46. D. Connor, Phys. Rev. Lett. 3, 429 (1959)

    Article  ADS  Google Scholar 

  47. Y.G. Abov, O.N. Yermakov, A.D. Gul’ko, P.A. Krupchitsky, S.S. Trostin, Nucl. Phys. 34, 505 (1962)

    Article  Google Scholar 

  48. K.M. Nollett, R. Wiringa, Phys. Rev. C 83, 041001 (2011). arXiv:1102.1787 [nucl-th]

    Article  ADS  Google Scholar 

  49. F. Barker, Nucl. Phys. A 588, 693 (1995)

    Article  ADS  Google Scholar 

  50. D.R. Phillips, G. Rupak, M.J. Savage, Phys. Lett. B 473, 209 (2000). arXiv:nucl-th/9908054

    Article  ADS  Google Scholar 

  51. C. A. Bertulani, Private communications

  52. C.A. Bertulani, Comput. Phys. Commun. 156, 123 (2003)

    Article  ADS  Google Scholar 

  53. R. Higa, H.W. Hammer, U. van Kolck, Nucl. Phys. A 809, 171 (2008). arXiv:0802.3426 [nucl-th]

    Article  ADS  Google Scholar 

  54. R. Higa, G. Rupak, A. Vaghani, Eur. Phys. J. A 54, 89 (2018). arXiv:1612.08959 [nucl-th]

    Article  ADS  Google Scholar 

  55. J.-W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386 (1999). arXiv:nucl-th/9902056

    Article  ADS  Google Scholar 

  56. R. Higa, P. Premarathna, G. Rupak, (2020). arXiv:2010.13003 [nucl-th]

  57. M. A. Caprio, Comput. Phys. Commun. 171, 107 (2005). http://scidraw.nd.edu

  58. S. Choi, J. Lee, J.S. Shim, H. Song, J. Korean Phys. Soc. 25, 576 (1992)

    Google Scholar 

  59. S. Fleming, T. Mehen, I.W. Stewart, Nucl. Phys. A 677, 313 (2000). arXiv:nucl-th/9911001

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Bertulani and A. Horváth for discussing their work on Coulomb dissociation with us. We benefited from discussions with K. M. Nollett, D. R. Phillips, and X. Zhang. This work was supported in part by U.S. NSF grants PHY-1615092 and PHY-1913620 (PP, GR) and Brazilian agency FAPESP thematic projects 2017/05660-0 and 2019/07767-1, and INCT-FNA Proc. No. 464898/2014-5 (RH). The cross section figures for this article have been created using SciDraw [57].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Rupak.

Additional information

Communicated by Pierre Capel.

Appendix A: Projectors

Appendix A: Projectors

The following are from Ref. [31] that we include for reference. For each partial wave we construct the corresponding projection operators from the relative core-nucleon velocity, the spin-1/2 Pauli matrices \(\sigma _{i}\)’s, and the following spin-1/2 to spin-3/2 transition matrices

$$\begin{aligned} S_1&=\frac{1}{\sqrt{6}}\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} -\sqrt{3} &{} 0 &{} 1 &{} 0\\ 0&{}-1&{}0&{}\sqrt{3} \end{array}\right) \,, \nonumber \\ S_2&= -\frac{i}{\sqrt{6}} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \sqrt{3} &{} 0 &{} 1 &{} 0\\ 0&{}1&{}0&{}\sqrt{3} \end{array}\right) \,, \nonumber \\ S_3&= \frac{2}{\sqrt{6}} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 1 &{} 0 &{} 0\\ 0&{}0&{}1&{}0 \end{array}\right) \,, \end{aligned}$$
(A1)

which satisfy

$$\begin{aligned} S_{i}S^{\dagger }_{j}&=\frac{2}{3}\delta _{ij}-\frac{i}{3}\epsilon _{ijk} \sigma _{k}\,, \nonumber \\ S_{i}^{\dagger }S_{j}&=\frac{3}{4}\delta _{ij}-\frac{1}{6}\big \{J_{i}^{(3/2)}, J_{j}^{(3/2)}\big \}+\frac{i}{3}\epsilon _{ijk}J_{k}^{(3/2)}\,, \end{aligned}$$
(A2)

where \(J_{i}^{(3/2)}\)’s are the generators of the spin-3/2. We construct the Clebsch-Gordan coefficient matrices

$$\begin{aligned} F_i&=-\frac{i\sqrt{3}}{2}\sigma _2 S_i\, ,&Q_{i j}&= -\frac{i}{\sqrt{8}}\sigma _2\big (\sigma _i S_i+\sigma _j S_i\big ), \end{aligned}$$
(A3)

for projections onto spin channels \(S=1\) and \(S=2\), respectively. Then in coordinate space the relevant projectors that appear in the Lagrangians involving the \(^7\)Li ground state in Eqs. (1), (2) are [30, 31]

$$\begin{aligned} P_i^{(^3S_1)}&= F_j\, , \nonumber \\ P_{ij}^{(^5S_2)}&= Q_{ij}\,, \nonumber \\ P^{(^3P_1)}_i&=\sqrt{\frac{3}{2} }F_x \left( \frac{\mathop {\nabla }\limits ^{{\rightarrow }}}{m_c}-\frac{\mathop {\nabla }\limits ^{{\leftarrow }}}{m_n}\right) _y \epsilon _{i x y}\,, \nonumber \\ P^{(^3P_2)}_{i j}&=\sqrt{3} F_x \left( \frac{\mathop {\nabla }\limits ^{{\rightarrow }}}{m_c}-\frac{\mathop {\nabla }\limits ^{{\leftarrow }}}{m_n}\right) _y\ R_{x y i j }\,, \nonumber \\ P^{(^5P_1)}_i&=\sqrt{\frac{9}{5}} Q_{i x}\left( \frac{\mathop {\nabla }\limits ^{{\rightarrow }}}{m_c}-\frac{\mathop {\nabla }\limits ^{{\leftarrow }}}{m_n}\right) _ x\,, \nonumber \\ P^{(^5P_2)}_{i j}&=\frac{1}{\sqrt{2}} Q_{x y} \left( \frac{\mathop {\nabla }\limits ^{{\rightarrow }}}{m_c}-\frac{\mathop {\nabla }\limits ^{{\leftarrow }}}{m_n}\right) _z\ T_{x y z i j}\, . \end{aligned}$$
(A4)

The tensors

$$\begin{aligned} R_{ijxy}&=\frac{1}{2}\left( \delta _{i x}\delta _{j y}+\delta _{i y}\delta _{j x} -\frac{2}{3}\delta _{i j}\delta _{x y}\right) , \nonumber \\ T_{xyz i j}&=\frac{1}{2}\Big (\epsilon _{x z i}\delta _{y j} +\epsilon _{x z j}\delta _{y i} +\epsilon _{y z i}\delta _{x j}+\epsilon _{y z j}\delta _{x i} \Big ), \end{aligned}$$
(A5)

ensures total angular momentum \(J=2\) is picked.

The new projectors to describe the interactions in Eq. (2) with the excited \(^7\mathrm {Li}^\star \) core are

$$\begin{aligned} P_i^{(^3S_1^\star )}&= -\frac{i}{\sqrt{2}}\sigma _2\sigma _i \, ,&\nonumber \\ P_i^{(^3P_1^\star )}&= -i\frac{\sqrt{3}}{2}\sigma _2 \sigma _x \left( \frac{\mathop {\nabla }\limits ^{{\rightarrow }}}{m_c}-\frac{\mathop {\nabla }\limits ^{{\leftarrow }}}{m_n}\right) _y \epsilon _{i x y}\, , \nonumber \\ P_{ij}^{(^3P_2^\star )}&= -i\sqrt{\frac{3}{2}}\sigma _2\sigma _x \left( \frac{\mathop {\nabla }\limits ^{{\rightarrow }}}{m_c}-\frac{\mathop {\nabla }\limits ^{{\leftarrow }}}{m_n}\right) _y R_{xyij}\, . \end{aligned}$$
(A6)

For the external states we introduce the photon vector (\(\varepsilon ^{(\gamma )}_{i}\)), excited state \(^8\)Li \(1^+\) spin-1 (\(\varepsilon _{j}\)), and ground state \(^8\)Li \(2^+\) spin-2 (\(\varepsilon _{ij}\)) polarizations, obeying the following polarization sums [58, 59],

$$\begin{aligned} \sum _\mathrm{pol.}\varepsilon ^{(\gamma )}_{i}\varepsilon ^{(\gamma )*}_{j}&= \delta _{ij}-\frac{k_ik_j}{k^2}\,, \nonumber \\ \sum _\mathrm{pol.\ ave.}\varepsilon _{i}\varepsilon ^{*}_{j}&=\frac{\delta _{ij}}{3}\,, \nonumber \\ \sum _\mathrm{pol.\ ave.}\varepsilon _{ij}\varepsilon ^{*}_{lm}&=\frac{R_{ijlm}}{5}\,. \end{aligned}$$
(A7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higa, R., Premarathna, P. & Rupak, G. Coupled-channel treatment of \({\varvec{^7}}\)Li\({\varvec{(n,\gamma )^8}}\)Li in effective field theory. Eur. Phys. J. A 57, 269 (2021). https://doi.org/10.1140/epja/s10050-021-00516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00516-6

Navigation