Skip to main content
Log in

Elastic positron–proton scattering at low Q\(^2\)

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Systematic differences in the the proton’s charge radius, as determined by ordinary atoms and muonic atoms, have caused a resurgence of interest in elastic lepton scattering measurements. The proton’s charge radius, defined as the slope of the charge form factor at Q\(^2\) = 0, does not depend on the probe. Any difference in the apparent size of the proton, when determined from ordinary versus muonic hydrogen, could point to new physics or need for the higher order corrections. While recent measurements seem to now be in agreement, there is to date no high precision elastic scattering data with both electrons and positrons. A high precision proton radius measurement could be performed in Hall B at Jefferson Lab with a positron beam and the calorimeter based setup of the PRad experiment. This measurement could also be extended to deuterons where a similar discrepancy has been observed between the muonic and electronic determination of deuteron charge radius. A new, high precision measurement with positrons, when viewed alongside electron scattering measurements and the forthcoming MUSE muon scattering measurement, could help provide new insights into the origins of the proton radius puzzle, and also provide new experimental constraints on radiative correction calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This article discusses a potential experiment that could be done if a positron source were to be constructed at JLab. As this experiment is only hypothetical at the moment, there is no data to deposit.]

References

  1. G.A. Miller, Phys. Rev. C 99(3), 035202 (2019). https://doi.org/10.1103/PhysRevC.99.035202

    Article  ADS  Google Scholar 

  2. R. Pohl et al., Nature 466, 213 (2010). https://doi.org/10.1038/nature09250

    Article  ADS  Google Scholar 

  3. A. Antognini et al., Science 339, 417 (2013). https://doi.org/10.1126/science.1230016

    Article  ADS  Google Scholar 

  4. C.E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015). https://doi.org/10.1016/j.ppnp.2015.01.002

    Article  ADS  Google Scholar 

  5. G.A. Miller, in 13th Conference on the intersections of particle and nuclear physics (2018)

  6. H. Gao, M. Vanderhaeghen, The proton charge radius. (2021)

  7. J.C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010). https://doi.org/10.1103/PhysRevLett.105.242001

    Article  ADS  Google Scholar 

  8. J.C. Bernauer et al., Phys. Rev. C 90(1), 015206 (2014). https://doi.org/10.1103/PhysRevC.90.015206

    Article  ADS  Google Scholar 

  9. M. Mihovilovič, et al., The proton charge radius extracted from the Initial State Radiation experiment at MAMI. (2019)

  10. M. Horbatsch, E.A. Hessels, Phys. Rev. C 93(1), 015204 (2016). https://doi.org/10.1103/PhysRevC.93.015204

    Article  ADS  Google Scholar 

  11. K. Griffioen, C. Carlson, S. Maddox, Phys. Rev. C 93(6), 065207 (2016). https://doi.org/10.1103/PhysRevC.93.065207

    Article  ADS  Google Scholar 

  12. D.W. Higinbotham, A.A. Kabir, V. Lin, D. Meekins, B. Norum, B. Sawatzky, Phys. Rev. C 93(5), 055207 (2016). https://doi.org/10.1103/PhysRevC.93.055207

    Article  ADS  Google Scholar 

  13. G. Lee, J.R. Arrington, R.J. Hill, Phys. Rev. D 92(1), 013013 (2015). https://doi.org/10.1103/PhysRevD.92.013013

    Article  ADS  Google Scholar 

  14. K.M. Graczyk, C. Juszczak, Phys. Rev. C 90, 054334 (2014). https://doi.org/10.1103/PhysRevC.90.054334

    Article  ADS  Google Scholar 

  15. I.T. Lorenz, U.G. Meißner, Phys. Lett. B 737, 57 (2014). https://doi.org/10.1016/j.physletb.2014.08.010

    Article  ADS  Google Scholar 

  16. M. Horbatsch, E.A. Hessels, A. Pineda, Phys. Rev. C 95(3), 035203 (2017). https://doi.org/10.1103/PhysRevC.95.035203

    Article  ADS  Google Scholar 

  17. J.M. Alarcón, D.W. Higinbotham, C. Weiss, Z. Ye, Phys. Rev. C 99(4), 044303 (2019). https://doi.org/10.1103/PhysRevC.99.044303

    Article  ADS  Google Scholar 

  18. J.M. Alarcón, D.W. Higinbotham, C. Weiss, Phys. Rev. C 102(3), 035203 (2020). https://doi.org/10.1103/PhysRevC.102.035203

    Article  ADS  Google Scholar 

  19. S. Zhou, P. Giulani, J. Piekarewicz, A. Bhattacharya, D. Pati, Phys. Rev. C 99(5), 055202 (2019). https://doi.org/10.1103/PhysRevC.99.055202

    Article  ADS  Google Scholar 

  20. S.K. Barcus, D.W. Higinbotham, R.E. McClellan, Phys. Rev. C 102(1), 015205 (2020). https://doi.org/10.1103/PhysRevC.102.015205

    Article  ADS  Google Scholar 

  21. M. Mihovilovič, D.W. Higinbotham, M. Bevc, S. Širca, Front. Phys. 8, 36 (2020). https://doi.org/10.3389/fphy.2020.00036

    Article  Google Scholar 

  22. D. Borisyuk, A. Kobushkin, Nucl. Phys. A 1002, 121998 (2020). https://doi.org/10.1016/j.nuclphysa.2020.121998

    Article  Google Scholar 

  23. Z.F. Cui, D. Binosi, C.D. Roberts, S.M. Schmidt, Fresh extraction of the proton charge radius from electron scattering. (2021)

  24. H. Atac, M. Constantinou, Z.E. Meziani, M. Paolone, N. Sparveris, Charge radii of the nucleon from its flavor dependent Dirac form factors. (2020)

  25. W. Xiong et al., Nature 575(7781), 147 (2019). https://doi.org/10.1038/s41586-019-1721-2

    Article  ADS  Google Scholar 

  26. N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A.C. Vutha, E.A. Hessels, Science 365(6457), 1007 (2019). https://doi.org/10.1126/science.aau7807

    Article  ADS  Google Scholar 

  27. H.W. Hammer, U.G. Meißner, Sci. Bull. 65, 257 (2020). https://doi.org/10.1016/j.scib.2019.12.012

    Article  Google Scholar 

  28. L. Camilleri, J.H. Christenson, M. Kramer, L.M. Lederman, Y. Nagashima, T. Yamanouchi, Phys. Rev. Lett. 23, 153 (1969). https://doi.org/10.1103/PhysRevLett.23.153

    Article  ADS  Google Scholar 

  29. T. Braunstein, W.L. Lakin, F. Martin, M.L. Perl, W.T. Toner, T.F. Zipf, Phys. Rev. D 6, 106 (1972). https://doi.org/10.1103/PhysRevD.6.106

    Article  ADS  Google Scholar 

  30. R. Gilman, et al., Studying the proton ”Radius” puzzle with \(\backslash {} {\rm mu}\)p elastic scattering. (2013)

  31. R. Gilman, et al., Technical design report for the Paul Scherrer Institute experiment R-12-01.1: studying the proton ”Radius” puzzle with \(\mu p\) elastic scattering. (2017)

  32. R. Aaij, et al., Test of lepton universality in beauty-quark decays. (2021)

  33. M. Mihovilovič et al., Phys. Lett. B 771, 194 (2017). https://doi.org/10.1016/j.physletb.2017.05.031

  34. A. Gasparian, et al., PRad-II: a new upgraded high precision measurement of the proton charge radius. (2020)

  35. J. Pierce, et al., The PRad windowless gas flow target. (2021)

  36. A. Gasparian, in 10th International conference on calorimetry in high energy physics (CALOR 2002) (2002), pp. 208–214

  37. A. Gasparian, in 11th International conference on calorimetry in high-energy physics (Calor 2004) (2004), pp. 109–115

  38. C.W. Leemann, D.R. Douglas, G.A. Krafft, Annu. Rev. Nucl. Part. Sci. 51, 413 (2001). https://doi.org/10.1146/annurev.nucl.51.101701.132327

    Article  ADS  Google Scholar 

  39. J. Grames, D.W. Higinbotham, H.E. Montgomery, Nucl. Phys. News 20N3, 6 (2010). https://doi.org/10.1080/10619127.2010.506115

    Article  Google Scholar 

  40. X. Yan, D.W. Higinbotham, D. Dutta, H. Gao, A. Gasparian, M.A. Khandaker, N. Liyanage, E. Pasyuk, C. Peng, W. Xiong, Phys. Rev. C 98(2), 025204 (2018). https://doi.org/10.1103/PhysRevC.98.025204

    Article  ADS  Google Scholar 

  41. J. Zhou et al., Phys. Rev. C 103(2), 024002 (2021). https://doi.org/10.1103/PhysRevC.103.024002

    Article  ADS  Google Scholar 

  42. D. Abbott et al., Phys. Rev. Lett. 116(21), 214801 (2016). https://doi.org/10.1103/PhysRevLett.116.214801

    Article  ADS  Google Scholar 

  43. J. Grames, M. Poelker, JLab LDRD project: a positron source for our future. https://wiki.jlab.org/ciswiki/images/1/18/Grames_Poelker_PositronSource_FINAL.pdf (2020)

  44. A. Accardi, et al., e\(^+\)@JLab white paper: an experimental program with positron beams at Jefferson Lab. (2020)

  45. I. Akushevich, H. Gao, A. Ilyichev, M. Meziane, Eur. Phys. J. A 51(1), 1 (2015). https://doi.org/10.1140/epja/i2015-15001-8

    Article  ADS  Google Scholar 

  46. A.B. Arbuzov, T.V. Kopylova, Eur. Phys. J. C 75(12), 603 (2015). https://doi.org/10.1140/epjc/s10052-015-3833-7

    Article  ADS  Google Scholar 

  47. R.D. Bucoveanu, H. Spiesberger, Eur. Phys. J. A 55(4), 57 (2019). https://doi.org/10.1140/epja/i2019-12727-1

    Article  ADS  Google Scholar 

  48. T. Becher, K. Melnikov, JHEP 06, 084 (2007). https://doi.org/10.1088/1126-6708/2007/06/084

    Article  ADS  Google Scholar 

  49. A.A. Penin, N. Zerf, Phys. Lett. B 760, 816 (2016). https://doi.org/10.1016/j.physletb.2016.07.077. Erratum: Phys. Lett. B 771, 637–637 (2017)

    Article  ADS  Google Scholar 

  50. A.A. Penin, Phys. Rev. Lett. 95, 010408 (2005). https://doi.org/10.1103/PhysRevLett.95.010408

    Article  ADS  Google Scholar 

  51. R. Bonciani, A. Ferroglia, Nucl. Phys. B Proc. Suppl. 157, 11 (2006). https://doi.org/10.1016/j.nuclphysbps.2006.03.033

    Article  ADS  Google Scholar 

  52. B.S. Henderson et al., Phys. Rev. Lett. 118(9), 092501 (2017). https://doi.org/10.1103/PhysRevLett.118.092501

    Article  ADS  Google Scholar 

  53. C.E. Carlson, M. Vanderhaeghen, Annu. Rev. Nucl. Part. Sci. 57, 171 (2007). https://doi.org/10.1146/annurev.nucl.57.090506.123116

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-FG02-03ER41231 and DE-AC05-060R23177. This work is supported in part by NSF Grant NSF PHY-1812421.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Nicolas Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hague, T.J., Dutta, D., Higinbotham, D.W. et al. Elastic positron–proton scattering at low Q\(^2\). Eur. Phys. J. A 57, 199 (2021). https://doi.org/10.1140/epja/s10050-021-00508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00508-6

Navigation