Skip to main content
Log in

Structure of the meson Regge trajectories

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We investigate the structure of the meson Regge trajectories based on the quadratic form of the spinless Salpeter-type equation. It is found that the forms of the Regge trajectories depend on the energy region. As the employed Regge trajectory formula does not match the energy region, the fitted parameters neither have explicit physical meanings nor obey the constraints although the fitted Regge trajectory can give the satisfactory predictions if the employed formula is appropriate mathematically. Moreover, the consistency of the Regge trajectories obtained from different approaches is discussed. And the Regge trajectories for different mesons are presented. Finally, we show that the masses of the constituents will come into the slope and explain why the slopes of the fitted linear Regge trajectories vary with different kinds of mesons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data are included in the paper.]

References

  1. G.F. Chew, S.C. Frautschi, Phys. Rev. Lett. 7, 394–397 (1961). https://doi.org/10.1103/PhysRevLett.7.394

    Article  ADS  Google Scholar 

  2. G.F. Chew, S.C. Frautschi, Phys. Rev. Lett. 8, 41–44 (1962). https://doi.org/10.1103/PhysRevLett.8.41

    Article  ADS  Google Scholar 

  3. P.D.B. Collins, An Introduction to Regge Theory and High-Energy Physics (Cambrige University Press, London, 1977). https://doi.org/10.1017/CBO9780511897603

  4. Y. Nambu, Phys. Rev. D 10, 4262 (1974). https://doi.org/10.1103/PhysRevD.10.4262

    Article  ADS  Google Scholar 

  5. J. Polchinski, M.J. Strassler, Phys. Rev. Lett. 88, 5 (2002). https://doi.org/10.1103/PhysRevLett.88.031601. arXiv:hep-th/0109174 [hep-th]

    Article  Google Scholar 

  6. M. Nielsen, S.J. Brodsky, G.F. de Téramond, H.G. Dosch, F.S. Navarra and L. Zou, Phys. Rev. D 98(3), 034002 (2018). https://doi.org/10.1103/PhysRevD.98.034002, arXiv:1805.11567 [hep-ph]

  7. M.G. Olsson, S. Veseli, K. Williams, Phys. Rev. D 51, 5079-5089 (1995). https://doi.org/10.1103/PhysRevD.51.5079, arXiv:hep-ph/9410405 [hep-ph]

  8. D.E. Kahana, K.M. Maung, J.W. Norbury, Phys. Rev. D 48, 3408–3409 (1993). https://doi.org/10.1103/PhysRevD.48.3408

    Article  ADS  Google Scholar 

  9. W. Lucha, F.F. Schoberl, D. Gromes, Phys. Rept. 200, 127–240 (1991). https://doi.org/10.1016/0370-1573(91)90001-3

    Article  ADS  Google Scholar 

  10. M. Baldicchi, G.M. Prosperi, Phys. Lett. B 436, 145-152 (1998). https://doi.org/10.1016/S0370-2693(98)00830-2, arXiv:hep-ph/9803390 [hep-ph]

  11. A. Martin, Z. Phys. C 32 359, 315-322 (1986).https://doi.org/10.1007/BF01551832

  12. J. Sonnenschein, D. Weissman, Eur. Phys. J. C 79(4), 326 (2019). https://doi.org/10.1140/epjc/s10052-019-6828-y, arXiv:1812.01619 [hep-ph]

  13. A. Inopin, G.S. Sharov, Phys. Rev. D 63, 6 (2001). https://doi.org/10.1103/PhysRevD.63.054023. arXiv:hep-ph/9905499 [hep-ph]

    Article  Google Scholar 

  14. A.M. Badalian, B.L.G. Bakker, Phys. Rev. D 100(3), 034010 (2019). DOIurlhttps://doi.org/10.1103/PhysRevD.100.034010, arXiv:1901.10280 [hep-ph]

  15. S.J. Brodsky, G.F. de Téramond, H.G. Dosch, C. Lorcé, Phys. Lett. B 759, 171–177 (2016). https://doi.org/10.1016/j.physletb.2016.05.068, arXiv:1604.06746 [hep-ph]

  16. A. Selem, F. Wilczek (2019). https://doi.org/10.1142/9789812773524_0030, arXiv:hep-ph/0602128 [hep-ph]

  17. J.T. Londergan, J. Nebreda, J.R. Pelaez, A. Szczepaniak, Phys. Lett. B 729, 9–14 (2014). https://doi.org/10.1016/j.physletb.2013.12.061, arXiv:1311.7552 [hep-ph]

  18. M.M. Brisudova, L. Burakovsky, J.T. Goldman, Phys. Rev. D 61, 5 (2000). https://doi.org/10.1103/PhysRevD.61.054013. arXiv:hep-ph/9906293 [hep-ph]

    Article  Google Scholar 

  19. M.N. Sergeenko, Z Phys. C 64, 315–322 (1994). https://doi.org/10.1007/BF01557404

    Article  ADS  Google Scholar 

  20. M.N. Sergeenko, Phys. Atom. Nucl. 56, 365–371 (1993)

    ADS  Google Scholar 

  21. S. Veseli, M.G. Olsson, Phys. Lett. B 383, 109-115 (1996). https://doi.org/10.1016/0370-2693(96)00721-6, arXiv:hep-ph/9606257 [hep-ph]

  22. S.S. Afonin, I.V. Pusenkov, Phys. Rev. D 90(9), 094020 (2014). https://doi.org/10.1103/PhysRevD.90.094020, arXiv:1411.2390 [hep-ph]

  23. S.S. Afonin (2019). https://doi.org/10.1142/9789811219313_0018, arXiv:2009.05378 [hep-ph]

  24. G. Cotugno, R. Faccini, A.D. Polosa, C. Sabelli, Phys. Rev. Lett. 104, 5 (2010). https://doi.org/10.1103/PhysRevLett.104.132005. arXiv:0911.2178 [hep-ph]

    Article  Google Scholar 

  25. T.J. Burns, F. Piccinini, A.D. Polosa, C. Sabelli, Phys. Rev. D 82, 5 (2010). https://doi.org/10.1103/PhysRevD.82.074003. arXiv:1008.0018 [hep-ph]

    Article  Google Scholar 

  26. M.A. Martin Contreras, A. Vega, Phys. Rev. D 102(4), 046007 (2020). https://doi.org/10.1103/PhysRevD.102.046007, arXiv:2004.10286 [hep-ph]

  27. J.K. Chen (2021), in preparation

  28. A.E. Inopin (2019) arXiv:hep-ph/0110160 [hep-ph], and references therein

  29. J.K. Chen, Eur. Phys. J. C 78(3), 235 (2018). https://doi.org/10.1140/epjc/s10052-018-5718-z

    Article  ADS  Google Scholar 

  30. J.K. Chen, Eur. Phys. J. C 78(8), 648 (2018). https://doi.org/10.1140/epjc/s10052-018-6134-0

    Article  ADS  Google Scholar 

  31. J.K. Chen, Phys. Lett. B 786, 477-484 (2018). https://doi.org/10.1016/j.physletb.2018.10.022, arXiv:1807.11003 [hep-ph]

  32. M. Baldicchi, A.V. Nesterenko, G.M. Prosperi, D.V. Shirkov, C. Simolo, Phys. Rev. Lett. 99, 55 (2007). https://doi.org/10.1103/PhysRevLett.99.242001. arXiv:0705.0329 [hep-ph]

    Article  Google Scholar 

  33. M. Baldicchi, A.V. Nesterenko, G.M. Prosperi, C. Simolo, Phys. Rev. D 77, 55 (2008). https://doi.org/10.1103/PhysRevD.77.034013. arXiv:0705.1695 [hep-ph]

    Article  Google Scholar 

  34. N. Brambilla, E. Montaldi, G.M. Prosperi, Phys. Rev. D 54, 3506-3525 (1996). https://doi.org/10.1103/PhysRevD.54.3506, arXiv:hep-ph/9504229 [hep-ph]

  35. J.K. Chen, Acta Phys. Pol. B 47, 1155 (2016)

    Article  ADS  Google Scholar 

  36. J.K. Chen, Rom. J. Phys. 62, 119 (2017)

    Google Scholar 

  37. S. Tomonaga, Quantum Mechanics, Volume I: Old Quantum Theory (North-Holland Publishing Company, Amsterdam, 1962)

  38. F. Brau, Phys. Rev. D 62, 5 (2000). https://doi.org/10.1103/PhysRevD.62.014005. arXiv:hep-ph/0412170 [hep-ph]

    Article  Google Scholar 

  39. I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, corrected and enlarge edn (Academic Press, New York, 1980)

    Google Scholar 

  40. K. Chen, Y. Dong, X. Liu, Q.F. Lü, T. Matsuki, Eur. Phys. J. C 78(1), 20 (2018). https://doi.org/10.1140/epjc/s10052-017-5512-3, arXiv:1709.07196 [hep-ph]

  41. D. Jia, W.N. Liu, A. Hosaka, Phys. Rev. D 101(3), 034016 (2020). arXiv:1907.04958 [hep-ph]

  42. M. Fabre De La Ripelle, Phys. Lett. B 205, 97–102 (1988). https://doi.org/10.1016/0370-2693(88)90406-6

    Article  ADS  Google Scholar 

  43. C. Quigg, J.L. Rosner, Phys. Rept. 56, 167–235 (1979). https://doi.org/10.1016/0370-1573(79)90095-4

    Article  ADS  Google Scholar 

  44. R.L. Hall, Phys. Rev. D 30, 433–436 (1984). https://doi.org/10.1103/PhysRevD.30.433

    Article  ADS  Google Scholar 

  45. A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 5 (2006). https://doi.org/10.1103/PhysRevD.74.015005. arXiv:hep-ph/0602229 [hep-ph]

  46. E. Folco Capossoli, M.A. Martín Contreras, D. Li, A. Vega, H. Boschi-Filho, Chin. Phys. C 44(6), 064104 (2020). https://doi.org/10.1088/1674-1137/44/6/064104, arXiv:1903.06269 [hep-ph]

  47. Z.F. Luo, X.J. Qiu, J. Phys. G: Nucl. Part. Phys. 18, 221–224 (1992)

    Article  ADS  Google Scholar 

  48. W. Lucha, F.F. Schoberl, Phys. Rev. Lett. 64, 2733 (1990). https://doi.org/10.1103/PhysRevLett.64.2733

    Article  ADS  MathSciNet  Google Scholar 

  49. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 79, 5 (2009). https://doi.org/10.1103/PhysRevD.79.114029. arXiv:0903.5183 [hep-ph]

    Article  Google Scholar 

  50. D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 66, 197-206 (2010). https://doi.org/10.1140/epjc/s10052-010-1233-6, hyperimagehttp://arxiv.org/abs/0910.5612arXiv:0910.5612 [hep-ph]

  51. D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 71, 1825 (2011). https://doi.org/10.1140/epjc/s10052-011-1825-9. arXiv:1111.0454 [hep-ph]

    Article  ADS  Google Scholar 

  52. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189–231 (1985). https://doi.org/10.1103/PhysRevD.32.189

    Article  ADS  Google Scholar 

  53. M. Baldicchi, G.M. Prosperi (2019). https://doi.org/10.1142/9789812702845_0014, arXiv:hep-ph/0310213 [hep-ph]

  54. L. Roca, E. Oset, J. Singh, Phys. Rev. D 72, 5 (2005). https://doi.org/10.1103/PhysRevD.72.014002. arXiv:hep-ph/0503273 [hep-ph]

    Article  Google Scholar 

  55. R. Molina, D. Nicmorus, E. Oset, Phys. Rev. D 78, 5 (2008). https://doi.org/10.1103/PhysRevD.78.114018. arXiv:0809.2233 [hep-ph]

    Article  Google Scholar 

  56. L.S. Geng, E. Oset, Phys. Rev. D 79, 5 (2009). https://doi.org/10.1103/PhysRevD.79.074009. arXiv:0812.1199 [hep-ph]

    Article  Google Scholar 

  57. J. Yamagata-Sekihara, L. Roca, E. Oset, Phys. Rev. D 82, 094017 (2010). [erratum: Phys. Rev. D 85, 119905 (2012)] https://doi.org/10.1103/PhysRevD.82.094017, arXiv:1010.0525 [hep-ph]

  58. L. Roca, E. Oset, Phys. Rev. D 82, 5 (2010). https://doi.org/10.1103/PhysRevD.82.054013. arXiv:1005.0283 [hep-ph]

    Article  Google Scholar 

  59. J.R. Pelaez, A. Rodas, Eur. Phys. J. C 77(6), 431 (2017). https://doi.org/10.1140/epjc/s10052-017-4994-3, arXiv:1703.07661 [hep-ph]

  60. P.A. Zyla et al., [Particle Data Group], PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

  61. J.L. Basdevant, S. Boukraa, Z. Phys. C 28, 413 (1985). https://doi.org/10.1007/BF01413604

    Article  ADS  Google Scholar 

  62. J. Sonnenschein, D. Weissman, JHEP 08, 013 (2014). https://doi.org/10.1007/JHEP08(2014)013. arXiv:1402.5603 [hep-ph]

    Article  ADS  Google Scholar 

  63. L.M. Abreu, F.M. d. Júnior, A.G. Favero, Phys. Rev. D 102(3), 034002 (2020). https://doi.org/10.1103/PhysRevD.102.034002, arXiv:2007.07849 [hep-ph]

  64. L.M. Abreu, F.M. da Costa Júnior, A.G. Favero, Phys. Rev. D 101(11), 116016 (2020). https://doi.org/10.1103/PhysRevD.101.116016, arXiv:2004.10736 [hep-ph]

  65. V. Kher, N. Devlani, A.K. Rai, Chin. Phys. C 41(9), 093101 (2017). https://doi.org/10.1088/1674-1137/41/9/093101, arXiv:1705.08248 [hep-ph]

Download references

Acknowledgements

We are very grateful to the anonymous referees for the valuable comments and suggestions. This work is supported by the Natural Science Foundation of Shanxi Province of China under Grant no. 201901D111289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao-Kai Chen.

Additional information

Communicated by Eulogio Oset

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JK. Structure of the meson Regge trajectories. Eur. Phys. J. A 57, 238 (2021). https://doi.org/10.1140/epja/s10050-021-00502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00502-y

Navigation