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Abstract Dalitz decays of a hyperon resonance to a
ground-state hyperon and an electron-positron pair can give
access to some information about the composite structure of
hyperons. We present expressions for the multi-differential
decay rates in terms of general transition form factors for
spin-parity combinations J P = 1

2
±
, 3

2
±

of the hyperon res-
onance. Even if the spin of the initial hyperon resonance is
not measured, the self-analyzing weak decay of the “final”
ground-state hyperon contains information about the rela-
tive phase between combinations of transition form factors.
This relative phase is non-vanishing because of the unstable
nature of the hyperon resonance. If all form factor combina-
tions in the differential decay formulae are replaced by their
respective values at the photon point, one obtains a QED type
approximation, which might be interpreted as characterizing
hypothetical hyperons with point-like structure. We compare
the QED type approximation to a more realistic form factor
scenario for the lowest-lying singly-strange hyperon reso-
nances. In this way we explore which accuracy in the mea-
surements of the differential Dalitz decay rates is required
in order to distinguish the composite-structure case from
the pointlike case. Based on the QED type approximation
we obtain as a by-product a rough prediction for the ratio
between the Dalitz decay width and the corresponding pho-
ton decay width.

1 Motivation

Electromagnetic form factors have become an important tool
to study the structure of strongly interacting objects, see e.g.
[1–23] and references therein. In the near future, photon and
Dalitz decays of hyperons will be measured at GSI/FAIR
by HADES+PANDA [24], Y ∗ → Yγ and Y ∗ → Y e+e−,

a e-mail: nora.salone@ncbj.gov.pl (corresponding author)

respectively. Here Y ∗ denotes a singly-strange hyperon res-
onance and Y a ground-state hyperon (Λ or Σ).

In the present work we want to explore what it takes to
extract more information from the Dalitz decays than from
the photon decays. In other words: How accurately does one
need to measure the Dalitz decay distribution to determine
an energy dependence of the form factors? In turn, the shape
of a form factor is related to the information about the intrin-
sic structure [2,8,16]. To this end, we introduce the most
general transition form factors for spin-parity combinations
J P = 1

2
±
, 3

2
±

of Y ∗. This is similar in spirit to the devel-
opments of [12,25] for e+e− → Y ∗Ȳ , but for a different
kinematical regime. For general considerations about tran-
sition form factors see also [11,13]. In practice, what we
focus on are the low-lying hyperon resonances Λ(1405) with
J P = 1

2
−

, Λ(1520) with J P = 3
2
−

[26]. For completeness

we cover also the cases of J P = 3
2
+

and J P = 1
2
+

. Exam-
ples for the latter are the states Σ(1385) and Σ0, respectively.
Transitions of those states have been studied by the group of
one of the authors in [1,4,5,27,28].

The Λ(1405) is a very interesting state; see e.g. [29–36]
and references therein. It is the lowest-lying baryon state with
negative parity [26].
Naively, one would think that the lowest-lying baryon with
negative parity should contain only up and down quarks
since those are significantly lighter than the s-quark. Yet,
the Λ(1405) as the lightest baryon with negative parity has
a stangeness of −1, i.e. must contain (at least) one strange
quark. This triggered many discussions about the nature of
the Λ(1405) as a state that might not fit into the quark model,
which describes baryons as three-quark states. As an alter-
native, a bound state of nucleon and antikaon (“hadronic
molecule”) has been proposed. It has also been suggested
that there might actually be two coupled-channel hadronic-
molecule states [32], one coupling stronger to the nucleon-
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antikaon structure and one stronger to Σ-pion, which con-
stitutes the main decay mode of the Λ(1405). From a more
quantitative point of view the proper question is how much
overlap a physical Λ(1405) state has e.g. with a three-quark
or with a proton-antikaon field configuration etc. In any case,
it is conceivable that different pictures about the nature of the
Λ(1405) lead to somewhat different size predictions. More
generally, different ideas about the intrinsic structure can lead
to different predictions for the differential Dalitz decay rates.

The second concrete example for which we will provide
quantitative results is the Λ(1520). It is the strange baryon
next in mass after covering Σ and Σ(1385) previously [1,
4,5,27,28] and the Λ(1405) in the present work. Above the
Λ(1520) our low-energy techniques might fail to work. To
provide a self-contained work, it makes sense to cover also
the Λ(1520) in the present paper.

Though the Λ(1520) is often regarded as a typical quark-
model state, see e.g. the mini-review in [26], there are
also ideas that suggest the Λ(1520) essentially as a hadron
molecule partner to the Λ(1405) when interchanging ground-
state baryons from the nucleon octet by spin-3/2 states from
the Δ decuplet [37]. Like for the Λ(1405), it can be expected
that different pictures about the structure of the Λ(1520)

[38,39] lead to different predictions for the differential Dalitz
decay rates.

The purpose of the present paper is not about developing
particular models for the structure of the Λ(1405) or the
Λ(1520). Yet we take the large interest in these states as a
motivation to perform a model-independent analysis of the
capability of Dalitz decays to access their respective intrinsic
structure.

The paper is structured in the following way. In the next
section we present the framework to introduce electromag-
netic transition form factors in the most general way for initial
states with spin 3/2 or 1/2 and final states with spin 1/2. We
will calculate the decay rates for radiative (photon) decays
and Dalitz decays and also include the possibility that the
“final” hyperon emerging from the Dalitz decay performs
a further weak decay into nucleon and pion. In Sect. 3 we
introduce our parametrization for the transition form factors
that features transition radii. We also specify a “structure-
less” case that we can contrast with the case of an extended
structure. In Sect. 4 we apply our framework concretely to
the two initial states Λ(1405) and Λ(1520) (and the final
state of a ground state Λ). Further discussion and a summary
is provided in Sect. 5. Appendices are added for technical
purposes, but also to explain some conceptual issues that do
not fit into the main body of the text.

2 Constraint-free form factors, helicity amplitudes and
differential decay widths

From a formal point of view we study electromagnetic transi-
tions from a baryon resonance with spin 1/2 or 3/2 to a baryon
with spin 1/2. For this transition, we disregard parity violat-
ing processes, i.e. we focus on transitions mediated by the
strong and electromagnetic interactions. Prominent exam-
ples that can be described by this framework are the decays:
Λ(1520) → Λγ (∗), Σ0γ (∗); Λ(1405) → Λγ (∗), Σ0γ (∗);
Σ(1385) → Λγ (∗), Σγ (∗); Σ0 → Λγ (∗). Electroweak
processes like Ξ0 → Λγ (∗) would need a (straightfor-
ward) extension of the formalism and are not covered in
the present work. We will present formulae for all parity
combinations. When it comes to concrete applications we
will focus on two processes, namely Λ(1520) → Λγ (∗) and
Λ(1405) → Λγ (∗).

Generically we study the process Y ∗ → Yγ (∗) where
the star for the hyperon Y denotes an excited hyperon, i.e. a
resonance, while γ ∗ refers to a virtual photon γ .

2.1 Transition 3
2
∓ → 1

2
±

If the initial baryon Y ∗ has spin 3/2 and opposite parity to the
final baryon Y , the most general decomposition of the transi-
tion respecting Lorentz invariance, current conservation and
parity symmetry can be written as (cf. also [12])

〈pY , λY | jμ(0)|pY ∗, λY ∗〉 = eū(pY , λY )Γ
μν
− uν(pY ∗, λY ∗)

(1)

with

Γ
μν
− = −i H1(q2)mY ∗

(
γ μqν − /q gμν

)

+i H2(q2)
(
qν pμ

Y ∗ − (q · pY ∗) gμν
)

+i H3(q2)
(
qμqν − q2gμν

) (2)

and q := pY ∗ − pY . Here jμ denotes the electromagnetic
current and e the charge of the proton. The helicity of the ini-
tial (final) baryon is denoted by λY ∗ (λY ). Our conventions
for the spin-3/2 vector-spinor uν have been spelled out in [4].
Note that no γ5 appears here since either none or both of the
involved baryons have natural parity [11] (and the electro-
magnetic current is a vector current and has natural parity).
The three quantities Hi , i = 1, 2, 3, constitute constraint-
free transition form factors in the sense of a Bardeen-Tung-
Tarrach (BTT) construction [40,41].

We have introduced the three transition form factors Hi

such that they all have the same dimensionality (two inverse
mass dimensions). In general, these transition form factors
are complex quantities. Thus the appearance of the explicit
i’s in the defining Eq. (2) is a pure convention. However,
there is some meaning to this choice. Suppose one calculates
contributions to the transition form factors from an effec-
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tive Lagrangian that satisfies charge conjugation symmetry.
Then, a tree-level calculation will yield purely real results for
Hi . In other words, conventions have been chosen such that
only loops create imaginary parts for Hi . We substantiate this
further in Appendix A.

Next, we introduce dimensionless helicity amplitudes: we
define

H−(q2) := − (mY ∗ − mY )mY ∗ H1(q
2)

+ 1

2

(
m2

Y ∗ − m2
Y + q2

)
H2(q

2) + q2H3(q
2) ,

H0(q
2) := − (mY ∗ − mY )mY ∗ H1(q

2)

+ (mY ∗ − mY )mY ∗ H2(q
2)

+ mY ∗ − mY

2mY ∗

(
m2

Y ∗ − m2
Y + q2

)
H3(q

2) ,

H+(q2) := −
(
mY ∗mY − m2

Y + q2
)
H1(q

2)

+ 1

2

(
m2

Y ∗ − m2
Y + q2

)
H2(q

2) + q2H3(q
2) .

(3)

In a frame where the baryon momenta are aligned, the
helicity flip amplitude H− is related to the combinations
(λY ∗ , λY ) = (3/2, 1/2), (−3/2,−1/2). The other helicity
flip amplitude H+ is related to the combinations (λY ∗, λY ) =
(−1/2, 1/2), (1/2,−1/2). Finally the non-flip amplitude H0

relates to λY ∗ = λY = ±1/2. Note that the spin1 of the real
or virtual photon along the axis defined by the flight direction
of the hyperons is given by λγ = λY ∗ − λY .

The advantage of the helicity amplitudes over the three
transition form factors Hi , i = 1, 2, 3, is that there are no
interference terms when calculating the decay widths for the
reactions Y ∗ → Yγ and Y ∗ → Y e+e−. We will see this
explicitly below. A second advantage is that one can use
quark counting rules to determine the high-energy behavior
[13] of the helicity amplitudes for large values of space-like
q2 < 0. The main topic of this work are Dalitz decays. Here
the photon virtuality q2 is time-like and has an upper limit
given by (mY ∗ − mY )2. Therefore high-energy constraints
are not so relevant for the physics discussed here. Nonethe-
less, for completeness, we collect the high-energy behav-
ior of all transition form factors and helicity amplitudes in
Appendix B.

While the transition form factors H1, H2 and H3 are free
from kinematical constraints, the helicity amplitudes satisfy

H+((mY ∗ − mY )2) = H0((mY ∗ − mY )2)

= H−((mY ∗ − mY )2)
(4)

1 We avoid here the phrase “helicity” since the virtual photon might be
at rest.

and

2(mY ∗ + mY )

mY ∗ − mY
H0((mY ∗ + mY )2)

= H+((mY ∗ + mY )2) + H−((mY ∗ + mY )2) .

(5)

From a technical point of view, these relations are easy to
deduce from the definitions of the helicity amplitudes (3).
Later, the constraint (4) will be very important for our model
independent low-energy parametrization of the transitions.
Therefore we feel obliged to offer also a physical instead of
purely technical motivation for the kinematical constraints.
This physical explanation is provided in Appendix C.

The width for the two-body radiative decay
Y ∗ → Yγ is given by

Γ2 = e2 (mY ∗ + mY )2 (
m2

Y ∗ − m2
Y

)

96πm3
Y ∗

×
[
3|H−(0)|2 + |H+(0)|2

]
. (6)

As already announced there are no interference terms
between the helicity amplitudes. The absence of H0 signals
nothing but the non-existence of a longitudinally polarized
real photon.

To describe in the one-photon approximation the Dalitz
decay Y ∗ → Yγ ∗ → Y e+e− we choose a frame where the
virtual photon (and therefore the electron-positron pair) is at
rest. In this frame, θ denotes the angle between the hyperon Y
and the electron. The double-differential three-body (Dalitz)
decay width is given by

dΓ3

dq2d(cos θ)
= e4 pz

√
q2βe

(2π)3 192m3
Y ∗

(mY ∗ + mY )2 − q2

q2

×
{(

1 + cos2 θ + 4m2
e

q2 sin2 θ

)
[
3|H−(q2)|2 + |H+(q2)|2]

+
(

sin2 θ + 4m2
e

q2 cos2 θ

)
4q2

(mY ∗ − mY )2 |H0(q2)|2
}

.

(7)

Here we have used the velocity of the electron in the
rest frame of the electron-positron pair given by βe =√

1 − 4m2
e/q

2. The momentum of Y ∗ and Y in the rest frame
of the virtual photon is given by

pz := λ1/2(m2
Y ∗ ,m2

Y , q2)

2
√
q2

(8)

with the Källén function

λ(a, b, c) := a2 + b2 + c2 − 2(ab + bc + ac) . (9)

To obtain the integrated Dalitz decay width, we note that
the lower (upper) integration limit of the cos θ integration is
−1 (+1), i.e. the θ integration would go from π to 0 and not
the other way. This convention makes the right-hand side of
(7) positive.
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It is nice to see how all physical constraints are visible in
(7). For q2 = (2me)

2 the leptons are produced at rest. Thus
one cannot define an angle between electron and hyperon
momentum. The right-hand side of (7) should show no angu-
lar dependence. This is indeed the case. At the other end of
the phase space, i.e. for q2 = (mY ∗ −mY )2 the hyperons are
at rest. Again one cannot define an angle between electron
and hyperon momentum. Using the kinematical constraint
(4), one can see that also here the angular dependence disap-
pears.

Even though the electromagnetic transition that we con-
sider respects parity symmetry, we can allow for a further
decay of the “final” hyperon. Focusing now on Y = Λ (or
Σ±) this last decay is mediated by the weak interaction
and does violate the parity symmetry. As a consequence,
this decay populates different partial waves and gives rise
to an interference pattern. In total, we study now the decay
sequenceY ∗ → Y e+e− andY → πN . Thus we have a four-
body final state. In principle, this gives rise to 5 independent
kinematical variables. However, the intermediateY state is so
long-living [26] that its mass is fixed (and in the experimen-
tal analyses one triggers on a displaced vertex [42,43]). In
addition, one can show that the squared matrix element of the
four-body decay is independent of specific combinations of
four-momenta. This feature is discussed in Appendix D. As a
consequence, the specific four-body decay depends on three
independent variables, one variable more than the already
considered Dalitz decay.

Besides the invariant mass
√
q2 of the dilepton pair (the

photon virtuality γ ∗) and the angle θ between the electron
and the hyperons in the rest frame of γ ∗, one could use a
second relative angle. It is convenient to define this angle in
the frame where the decaying Y hyperon is at rest. In this
frame the electron-positron pair defines a plane. One could
use the angle between the plane’s normal and the direction
of the nucleon. Since it is a relative angle, its definition does
not depend on the choice of a coordinate system, only on
the choice of a proper frame of reference. Yet, to connect
to the formalism developed in [25,44–48] we introduce a
fixed coordinate system and find for the four-body decay
Y ∗ → Yγ ∗ → πN e+e− the differential decay width

dΓ4

dq2d(cos θ)dΩN

= e4 pz
√
q2βe

(2π)4 384m3
Y ∗

BrY→πN
(mY ∗ + mY )2 − q2

q2

×
{(

1 + cos2 θ + 4m2
e

q2 sin2 θ

)
[|H+(q2)|2 + 3|H−(q2)|2]

+
(

sin2 θ + 4m2
e

q2 cos2 θ

)
4q2

(mY ∗ − mY )2 |H0(q2)|2

− 4
√
q2β2

e
mY ∗ − mY

αY Im[H0(q2)H∗+(q2)]

× sin θ cos θ sin θN sin φN

}
. (10)

We recall that q2 is the square of the dilepton mass or photon
virtuality and θ denotes the angle between one of the hyper-
ons and the electron in the rest frame of the dilepton (rest
frame of the virtual photon). In addition, θN and φN are the
angles of the nucleon three-momentum measured in the rest
frame of Y . The coordinate system in this frame is defined by
q pointing in the negative z-direction (i.e. in the rest frame
of the virtual photon the Y direction defined the positive z-
axis) and the electron moves in the x − z plane with positive
momentum projection on the x-axis. In this frame, θN is the
angle of the nucleon momentum relative to the z-axis and
φN is the angle between the x-axis and the projection of the
nucleon momentum on the x-y plane, i.e.

pN = pf (sin θN cos φN , sin θN sin φN , cos θN ) ,

q = |q| (0, 0,−1) ,

pe− · ey = 0 , pe− · ex > 0 ,

ey = pe− × q
|pe− × q | , (11)

with the momentum pf of the nucleon in the rest frame of
the decaying Y hyperon. We provide the momentum and also
the corresponding energy:

pf = λ1/2(m2
Y ,m2

N ,m2
π )

2mY
(12)

and

EN = m2
Y + m2

N − m2
π

2mY
, (13)

with the Källén function defined in (9). Note the subtlety that
θ is measured in the rest frame of the virtual photon while
ΩN denotes angles in the rest frame of the Y hyperon. In
terms of Lorentz invariant quantities the angles are related to

pY · ke = −1

2
λ1/2(m2

Y ∗ ,m2
Y , q2) βe cos θ ,

εμναβ kμ
e pν

Y pα
N qβ

= −1

2

√
q2 λ1/2(m2

Y ∗,m2
Y , q2) pf βe

× sin θ sin θN sin φN (14)

with ke := pe− − pe+ , q = pe− + pe+ = pY ∗ − pY and
the convention [49] for the Levi-Civita symbol: ε0123 =
−1. Other aspects of the four-body decay are discussed in
Appendix D.

The final weak decay of a spin-1/2 hyperon to a nucleon
and a pion is driven by the matrix element [26]

Mweak = GF m2
π ūN (pN ) (A − Bγ5) uY (pY ) . (15)
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It is useful to introduce the asymmetry parameter

αY := 2Re(T ∗
s Tp)

|Ts |2 + |Tp|2 (16)

with the s-wave amplitude Ts := A, the p-wave amplitude
Tp := pf B/(EN + mN ) and mass mN , energy EN and
momentum pf of the nucleon in the rest frame of the decay-
ing hyperon Y ; see also appendix A of [44] for further details
that are useful for practical calculations.

For stable particles, e.g. nucleons, the electromagnetic
form factors are complex for positive transferred momen-
tum q2 ≥ 4m2

N i.e. for the reaction e+e− → N N̄ in the
time-like region of q2. On the other hand, the form factors
are real for the space-like region q2 < 0, i.e. for the scatter-
ing process e−N → e−N . However, for resonances, e.g. Y ∗,
the TFFs are complex for all values of q2 [4]. Therefore the
interference terms in (10) can in principle be measured. They
contain information that is complementary to the moduli that
are accessible by the Dalitz decay parametrized by (7). A
calculation of such interference terms is beyond the scope of
this work. Yet, the results of [4] suggest that such interference
terms are relatively small. Note that the spin-parity combi-
nation considered in [4] refers strictly speaking to Sect. 2.3
below, but semi-quantitatively we expect a similar pattern.
High experimental accuracy will be required to access these
interference terms in the Dalitz decay region. Yet, it might
be worth to extract this additional structure information. It
would also be interesting to see how different models for the
structure of hyperon resonances differ in their predictions for
such interference terms. In this context we stress once more
that in practice these interference terms are driven by the fact
that resonances are unstable with respect to the strong inter-
action. Quasi-stable states (which decay only because of the
electromagnetic or weak interaction) would have tiny imag-
inary parts of form factors. For the same reason, models that
treat resonances as stable are not capable to provide predic-
tions for such interference terms. For measurements of the
latter in the production region of hyperon-antihyperon pairs
see [21]. Note also that one needs an additional (weak) decay
(more generally a decay that populates more than one partial
wave) to make the interference term visible. If the asymme-
try parameter αY vanished, one would not see an interference
effect in (10).

2.2 Transition 1
2
∓ → 1

2
±

The structure of this subsection follows closely the previous
one. If the initial baryon Y ∗ has spin 1/2 and opposite par-
ity to the final baryon Y , the most general decomposition of
the transition respecting Lorentz invariance, current conser-
vation and parity symmetry can be written as (cf. also [12])

〈pY , λY | jμ(0)|pY ∗, λY ∗〉 = eū(pY , λY ) Γ
μ
− u(pY ∗ , λY ∗)

(17)

with

Γ
μ
− = F̃2(q

2)mY ∗ σμβqβγ5 + i F̃3(q
2)

(
q2γ μ − /qqμ

)
γ5 .

(18)

Note the appearance of a γ5 since one of the baryons
has unnatural parity. The two quantities F̃2 and F̃3 consti-
tute constraint-free transition form factors in the sense of
a BTT construction [40,41]. The labeling is motivated in
Appendix A.

We introduce dimensionless helicity amplitudes:

F̃0(q
2) := (mY ∗ − mY )2 F̃3(q

2)

− (mY ∗ − mY )mY ∗ F̃2(q
2) ,

F̃+(q2) := q2 F̃3(q
2) − (mY ∗ − mY )mY ∗ F̃2(q

2) . (19)

In a frame where the baryon momenta are aligned, the helicity
flip amplitude F̃+ is related to the combinations (λY ∗ , λY ) =
(−1/2, 1/2), (1/2,−1/2). The non-flip amplitude F̃0 relates
to λY ∗ = λY = ±1/2.

While the transition form factors F̃2 and F̃3 are free from
kinematical constraints, the helicity amplitudes satisfy

F̃+((mY ∗ − mY )2) = F̃0((mY ∗ − mY )2) . (20)

We will use this later for a model independent low-energy
parametrization of the transitions.
The constraint (20) can be easily deduced from the definitions
(19). Physically it follows from the fact that one partial wave
is dominant over the other at the end of the phase space of
the Dalitz decay Y ∗ → Y e+e−; see the related discussion
in Appendix C.

The respective decay widths for the two-body radiative
decayY ∗ → Yγ , the three-body Dalitz decayY ∗ → Yγ ∗ →
Y e+e−, and the four-body decay Y ∗ → Yγ ∗ → πN e+e−
are given by

Γ2 = e2|F̃+(0)|2 (mY ∗ + mY )2 (
m2

Y ∗ − m2
Y

)

8πm3
Y ∗

, (21)

dΓ3

dq2d(cos θ)
= e4 pz

√
q2βe

(2π)3 16m3
Y ∗

(mY ∗ + mY )2 − q2

q2

×
{(

1 + cos2 θ + 4m2
e

q2 sin2 θ

)
|F̃+(q2)|2

+
(

sin2 θ + 4m2
e

q2 cos2 θ

)
q2

(mY ∗ − mY )2 |F̃0(q
2)|2

}
,

(22)
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and
dΓ4

dq2d(cos θ)dΩN

= e4 pz
√
q2βe

(2π)4 32m3
Y ∗

BrY→πN
(mY ∗ + mY )2 − q2

q2

×
{(

1 + cos2 θ + 4m2
e

q2 sin2 θ

)
|F̃+(q2)|2

+
(

sin2 θ + 4m2
e

q2 cos2 θ

)
q2

(mY ∗ − mY )2 |F̃0(q
2)|2

+ 2
√
q2β2

e

mY ∗ − mY
αY Im[F̃0(q

2)F̃∗+(q2)]

× sin θ cos θ sin θN sin φN

}
.

(23)

Again, it is nice to see how all angular dependence dis-
appears for the cases where specific three-vectors vanish
and therefore do not allow to define relative angles. For
q2 = (2me)

2 one can see directly how all angular depen-
dence vanishes in the curly brackets of (22) and (23). For
q2 = (mY ∗ − mY )2 this is achieved by the kinematical con-
straint (20).

2.3 Transition 3
2
± → 1

2
±

The previous two subsections were devoted to cases that we
will study in more detail later. For completeness, we also add
two more combinations in the present and the succeeding
subsection.

If the initial baryon Y ∗ has spin 3/2 and the same parity as
the final baryon Y , the corresponding decomposition is given
by

〈pY , λY | jμ(0)|pY ∗, λY ∗〉
= eū(pY , λY )Γ

μν
+ uν(pY ∗ , λY ∗)

(24)

Γ
μν
+ = H̃1(q

2)mY ∗
(
γ μqν − /qgμν

)
γ5

+ H̃2(q
2)

(
qν pμ

Y ∗ − (q · pY ∗)gμν
)
γ5

+ H̃3(q
2)

(
qμqν − q2gμν

)
γ5 .

(25)

We see the appearance of a γ5 since one of the baryons has
unnatural parity. The three quantities H̃i , i = 1, 2, 3 consti-
tute constraint-free transition form factors in the sense of a
BTT construction [40,41].

We note that formally Γ
μν
+ is obtained from (2) by multi-

plying with −iγ5 from the left [12] and changing H → H̃ .
One can rephrase this by stating that one obtains (24), (25)
from (1), (2) by replacing ū by −i ūγ5 for the spinor of the
Y hyperon. The interesting aspect is that −i ūγ5 satisfies the
same equation of motion as ū but with the mass replaced
by its negative. As a consequence, most of the relations that

we present now for the transition 3/2± → 1/2± can be
obtained from the corresponding relations for the transition
3/2∓ → 1/2± from Sect. 2.1 by just replacing mY → −mY

(and changing H → H̃ ).
Again we introduce dimensionless helicity amplitudes:

H̃−(q2) := − (mY ∗ + mY )mY ∗ H̃1(q
2)

+ 1

2

(
m2

Y ∗ − m2
Y + q2

)
H̃2(q

2) + q2 H̃3(q
2) ,

H̃0(q
2) := − (mY ∗ + mY )mY ∗ H̃1(q

2)

+ (mY ∗ + mY )mY ∗ H̃2(q
2)

+ mY ∗ + mY

2mY ∗

(
m2

Y ∗ − m2
Y + q2

)
H̃3(q

2) ,

H̃+(q2) := −
(
q2 − mY ∗mY − m2

Y

)
H̃1(q

2)

+ 1

2

(
m2

Y ∗ − m2
Y + q2

)
H̃2(q

2) + q2 H̃3(q
2) .

(26)

Note that the conventions for the helicity amplitudes are in
line with [13], but opposite to [4].

The kinematical constraints obtain the form

H̃+((mY ∗ + mY )2) = H̃0((mY ∗ + mY )2)

= H̃−((mY ∗ + mY )2)
(27)

and

2(mY ∗ − mY )

mY ∗ + mY
H̃0((mY ∗ − mY )2)

= H̃+((mY ∗ − mY )2) + H̃−((mY ∗ − mY )2) .

(28)

The width for the two-body radiative decay Y ∗ → Yγ is
given by

Γ2 = e2
[
3|H̃−(0)|2 + |H̃+(0)|2

]

× (mY ∗ − mY )2 (
m2

Y ∗ − m2
Y

)

96πm3
Y ∗

. (29)

The differential decay width for the Dalitz decay Y ∗ →
Yγ ∗ → Y e+e− can be expressed as

dΓ3

dq2d(cos θ)
= e4 pz

√
q2βe

(2π)3 192m3
Y ∗

(mY ∗ − mY )2 − q2

q2

×
{(

1 + cos2 θ + 4m2
e

q2 sin2 θ

)
[
3|H̃−(q2)|2 + |H̃+(q2)|2]

+
(

sin2 θ + 4m2
e

q2 cos2 θ

)
4q2

(mY ∗ + mY )2 |H̃0(q2)|2
}

.

(30)
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The four-body decay Y ∗ → Yγ ∗ → πN e+e− has the fol-
lowing differential decay width:

dΓ4

dq2d(cos θ)dΩN

= e4 pz
√
q2βe

(2π)4 384m3
Y ∗

BrY→πN
(mY ∗ − mY )2 − q2

q2

×
{(

1 + cos2 θ + 4m2
e

q2 sin2 θ

)
[|H̃+(q2)|2 + 3|H̃−(q2)|2]

+
(

sin2 θ + 4m2
e

q2 cos2 θ

)
4q2

(mY ∗ + mY )2 |H̃0(q2)|2

+ 4
√
q2β2

e
mY ∗ + mY

αY Im[H̃0(q2)H̃∗+(q2)]

× sin θ cos θ sin θN sin φN

}
.

(31)

In the last equation we have a notable exception to
the “rule” that the formulae of the present subsection are
obtained from the corresponding ones in Sect. 2.1 by the
replacements mY → −mY and H → H̃ . The interference
term has the opposite sign to the one in (10).

2.4 Transition 1
2
± → 1

2
±

Finally we study the case of a transition between two hyper-
ons with the same spin and parity assignments. One such
case, the transition from Σ0 to Λ has been studied in detail
in [1,5].

The decomposition is given by

〈pY , λY | jμ(0)|pY ∗ , λY ∗〉 = eū(pY , λY ) Γ
μ
+ u(pY ∗ , λY ∗)

(32)

with

Γ
μ
+ = i F2(q

2)mY ∗ σμβqβ + F3(q
2)

(
q2γ μ − /qqμ

)
.

(33)

We introduce the dimensionless helicity amplitudes by

F0(q2) := (mY ∗ + mY )2F3(q2)

− (mY ∗ + mY )mY ∗ F2(q2) ,

F+(q2) := q2F3(q2) − (mY ∗ + mY )mY ∗ F2(q2) .

(34)

These helicity amplitudes satisfy the kinematical constraint

F+((mY ∗ + mY )2) = F0((mY ∗ + mY )2) . (35)

The respective decay widths for the two-body radiative
decayY ∗ → Yγ , the three-body Dalitz decayY ∗ → Yγ ∗ →
Y e+e−, and the four-body decay Y ∗ → Yγ ∗ → πN e+e−
are given by

Γ2 = e2|F+(0)|2 (mY ∗ − mY )2 (
m2

Y ∗ − m2
Y

)

8πm3
Y ∗

, (36)

dΓ3

dq2d(cos θ)
= e4 pz

√
q2βe

(2π)3 16m3
Y ∗

(mY ∗ − mY )2 − q2

q2

×
{(

1 + cos2 θ + 4m2
e

q2 sin2 θ

)
|F+(q2)|2

+
(

sin2 θ + 4m2
e

q2 cos2 θ

)
q2

(mY ∗ + mY )2 |F0(q
2)|2

}
,

(37)

and

dΓ4

dq2d(cos θ)dΩN

= e4 pz
√
q2βe

(2π)4 32m3
Y ∗

BrY→πN
(mY ∗ − mY )2 − q2

q2

×
{(

1 + cos2 θ + 4m2
e

q2 sin2 θ

)
|F+(q2)|2

+
(

sin2 θ + 4m2
e

q2 cos2 θ

)
q2

(mY ∗ + mY )2 |F0(q
2)|2

− 2
√
q2β2

e

mY ∗ + mY
αY Im[F0(q

2)F∗+(q2)]

× sin θ cos θ sin θN sin φN

}
. (38)

3 QED type case and form factor parametrization

In this section we will give a quantitative meaning to the
phrases “structureless” and “extended structure”. We will call
the former “QED type”. For the latter we introduce a radius.

A real photon does not resolve the intrinsic structure of
the composite hyperons that take part in the electromagnetic
transitions. It is the photon virtuality that relates to the reso-
lution; see e.g. the discussion in [2,8]. In this spirit, we define
a QED type case [4] by modifying the Dalitz decay formula
(7) such that it fits to the radiative decay formula (6). To this
end we replace e.g. in (7)

[
3|H−(q2)|2 + |H+(q2)|2] → [

3|H−(0)|2 + |H+(0)|2] ,

4q2

(mY ∗ − mY )2 |H0(q
2)|2 → 0 , (39)

i.e. we replace all virtualities q2 by 0 for these building
blocks. We can do this for all spin-parity combinations. In
this way we obtain a Dalitz decay formula for “structureless”
fermions. If we divide out the corresponding radiative decay
width we get

1

Γ2

dΓQED type

dq2d(cos θ)
= (mY ∗ ± mY )2 − q2

q2 (mY ∗ ± mY )2 (
m2

Y ∗ − m2
Y

)

×e2 pz
√
q2βe

(4π)2

(
1 + cos2 θ + 4m2

e

q2 sin2 θ

)
. (40)
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Here the upper (lower) sign refers to the cases where the
parities of initial and final fermion differ (are the same).

Obviously, this formula (40) is independent of any transi-
tion form factors or helicity amplitudes. If an experiment
cannot resolve the difference between nature and (40), it
cannot reveal if hyperons have an intrinsic structure or not.
This does not mean that the determination of radiative decay
widths does not contain any interesting information [18], but
no visible deviation from (40) means that the such measured
Dalitz decays do not contain more information than radiative
decays, i.e. decays with real photons.

The QED type case (40) defines our baseline to which
we want to compare the case where hyperons do have an
intrinsic structure. From now on we focus on decays of the
two negative-parity resonances Λ(1520) and Λ(1405). The
mass difference between the considered resonances and the
ground-state hyperons is not very large. Consequently the
energy range

√
q2 (dilepton invariant mass) that is explored

by the Dalitz decays is rather limited, it ranges from two times
the electron mass up to the mass difference mY ∗ −mY . For a
rough estimate of the importance of the q2 dependence, we
approximate any helicity amplitude G(q2) in the following
way:

G(q2) ≈ G(0)

(
1 + 1

6
q2〈r2〉

)
(41)

where we have introduced the radius via

〈r2〉 := 6

G(0)

dG(q2)

dq2

∣
∣∣∣
q2=0

. (42)

In view of the typical size of hadrons of about 1 fm, we
assume

0 ≤ 〈r2〉 ≤ 1 fm2 ≈ 25 GeV−2 . (43)

In practice, this will provide us with a rough upper limit of the
deviation of a differential decay rate from the corresponding
QED type case.

We would like to stress that (43) is not entirely accu-
rate. As already pointed out, the transition form factors and
helicity amplitudes for resonances are not real-valued in the
Dalitz decay region.2 Strictly speaking, this carries over to the
squared radii. The physical reason for being complex is the
inelastic two-step process of strong decay, Y ∗ → πY ′, and
rescattering, πY ′ → γ ∗Y . Here Y ′ denotes another hyperon.
However, the imaginary part of a transition form factor or
helicity amplitude will not be very large if the total decay
width of the resonance is sufficiently small. This is the case
for the resonances that we consider. For the electromagnetic
transitions Σ(1385) → Λ the imaginary parts of squared
radii have been explicitly calculated in [4]. There, the real

2 They are not even real-valued in the space-like region of electron-
hadron scattering.

parts were in the ballpark of (43) and the imaginary parts
were much smaller. Therefore we assume that the real part
of any 〈r2〉 is dominant over the imaginary part.

What remains to be shown to justify (43) as a reason-
able approximation? We still have to argue why the real part
should have positive sign. Indeed, there is a well-known case
where the squared radius of a hadron seems to be negative: the
electric charge radius of the neutron [26]. Yet, this is a some-
what misleading case. For the electric form factor of the neu-
tron, the radius cannot be defined via (42), since the charge
of the neutron, G(0), vanishes. As a remedy one drops G(0)

in the definition of the charge radius of the neutron. However,
one can take a somewhat different route to the same phys-
ical information. Instead of electric charge, one can look at
the isospin. The isoscalar and isovector form factors of the
nucleon have all non-vanishing “charges”. One can define
an isoscalar and an isovector radius based on (42), see, e.g.,
[3,19]. Those two radii are positive and in the order of 1 fm,
in full agreement with (43). Also the results of [4] support
this estimate. Finally we note that even the radius of the pion
transition form factor [50] fits into this picture. For all these
cases, the radii are less than 1 fm. Thus we believe that (43)
defines a reasonable conservative range and we expect that
for all hadrons, reality is closer to 1 fm than to 0.

4 Concrete results for negative-parity resonances

The parametrization (41) seems to indicate that we have two
free parameters per helicity amplitude. However, this is not
the case because we have to obey the kinematical constraints
(4) or (20), respectively. This will help us to express all rel-
evant quantities solely in terms of radii.

Some clarification is in order here. Of course, the ansatz
(41) is an approximation that holds only for sufficiently low
values of q2. We want to use this approximation for the whole
Dalitz decay region for cases where the mass difference
between the decaying and the final hyperon is sufficiently
small. The kinematical constraints (4) or (20) lie in this low-
energy region because they lie at the end of the kinematically
allowed Dalitz decay region. Therefore we can use the kine-
matical constraints to reduce the number of free parameters
and focus on the impact of the radii on the results. Note
that this line of reasoning would not work for positive-parity
resonances. In particular, the constraint (35) does not lie in
the low-energy region where the ansatz (41) would make
sense. Albeit not of completely general use, the kinematical
constraints are absolutely suited for the cases that we con-
sider further, namely for the hyperon resonances Λ(1520)

and Λ(1405) with spin-parity assignment 3/2− and 1/2−,
respectively [26].
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4.1 Transition radii and the decay Λ(1405) → Λ e+e−

Using (41) for the helicity amplitudes F̃+ and F̃0 allows us
to rewrite the kinematical constraint (20) into

F̃0(0) ≈ F̃+(0)
1 + (mY ∗ − mY )2〈r2〉+/6

1 + (mY ∗ − mY )2〈r2〉0/6
. (44)

The remaining dependence on F̃+(0) cancels out in the
ratio of the Dalitz decay width (22) and the radiative
decay width (21). Thus the such normalized decay width
dΓ3/(dq2d(cos θ))/Γ2 depends only on the (squared) tran-
sition radii 〈r2〉+ and 〈r2〉0.
In the following, we will focus on the once-integrated nor-
malized decay widths

1

Γ2

dΓ3

dq2 and
1

Γ2

dΓ3

d(cos θ)
, (45)

to study the dependence on the transition radii and compare
to the QED type case.

The q2 dependence is depicted in Fig. 1. We observe that
the radius related to the helicity flip amplitude F̃+ causes
a significant deviation from the QED type case. The effect
from the non-flip amplitude is minor. This is related to the
additional q2 factor that multiplies F̃0 in (22) and to the
larger weight of 1 + cos2 θ relative to sin2 θ = 1 − cos2 θ

when integrating over cos θ . Note that the QED type case
is not defined by putting all radii to zero. Therefore, there
is a small difference between the two curves in the bottom
panel of Fig. 1. We could have defined the QED type case
in a different way. But instead we use the occasion to point
out that there is in principle an ambiguity in defining the
structureless QED case. In practice, however, this ambiguity
is small.

Depending on the composition of the Λ(1405) as a dom-
inantly three-quark or dominantly hadron molecule state, its
helicity flip transition radius can be expected to be somewhat
different. Still we think that 1 fm is a reasonable estimate in
any case. We regard the plots of Fig. 1 as interesting for
experimentalists who aim to reveal the intrinsic structure of
the Λ(1405) using Dalitz decays. For this endeavor one needs
to achieve an experimental accuracy that can discriminate at
least between the two lines in the top panel of Fig. 1. To study
differences between different scenarios for the structure of
the Λ(1405) requires an even better accuracy.

Next we turn to the angular distribution. If one integrates
(22) or (40) over q2 (in the range (2me)

2 ≤ q2 ≤ (mY ∗ −
mY )2), one obtains a constant term and one linear in cos2 θ .
Thus the general structure is

1

Γ2

dΓ3

d(cos θ)
= A (cos2 θ + C) . (46)

If one integrates finally over the angle, one obtains the total
decay width for the process Y ∗ → Y e+e−, normalized to

Fig. 1 Comparison between radius structure and QED-type approxi-
mation for the 1

2
− → 1

2
+

transition. Top panel: both radii at maximal
value (43); middle panels: one radius at max, one zero; bottom panel:
both radii put to zero
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Table 1 Parameters A and C , and decay width ratio for the J P = 1
2

−

initial state in QED approximation and with a radius structure
(〈r2〉0; 〈r2〉+

)
GeV−2 A C 2

3 A + 2AC

(
0; 25

)
0.00252 1.43 0.00889

(
25; 25

)
0.00262 1.34 0.00876

(
0; 0

)
0.00253 1.30 0.00830

(
25; 0

)
0.00259 1.26 0.00823

QED type 0.00273 1.14 0.00804

the width for the process Y ∗ → Yγ , i.e.

Γ3

Γ2
= 2

3
A + 2AC . (47)

In Table 1 we provide A, C and the width ratio of (47) for
the QED type case and different radius combinations.

Concerning the overall scaling factor A, we observe that
different radii lead to modifications on a 10% level. However,
for this parameter the ambiguity how to define a structureless
case is in the same order.

For the parameter C , larger helicity flip transition radii
lead to larger values. In total, we observe variations up to
about 20%. Interestingly, a radius 〈r2〉0 in the non-flip ampli-
tude counteracts the effect of a radius 〈r2〉+ in the helicity
flip amplitude.

We predict that the Dalitz decay width, normalized to the
radiative decay width, is about 0.8–0.9%. This fits to the rule
of thumb that an additional QED vertex provides a suppres-
sion factor of about α = e2/(4π) ≈ 10−2.

4.2 Transition radii and the decay Λ(1520) → Λ e+e−

We perform the same procedure for the decays of the spin-
3/2− hyperon resonance Y ∗ = Λ(1520).
For the numerical results we focus on Y = Λ, the lightest
strange baryon. The approximation (41) is utilized for the
helicity amplitudes H+, H0, H−. It is supposed to be valid
in the whole Dalitz decay region, (2me)

2 ≤ q2 ≤ (mY ∗ −
mY )2. The kinematical constraints (4) are used to eliminate
the dependence on H...(0) for the ratio of Dalitz decay width
and radiative width. What remains is the dependence on the
three squared radii, 〈r2〉+, 〈r2〉0, 〈r2〉−. Figs. 2 and 3 illustrate
this dependence as a function of q2 for the normalized singly-
differential Dalitz decay width.

What the plots show, first of all, is the fact that 〈r2〉− mat-
ters most. Whenever it is large, there is a significant deviation
from the QED type case. Whenever it is small, the results with
radii are close to the structureless QED case. Essentially this
can be traced back to the explicit factor of 3 in (7) that boosts
the importance of H− relative to the other two helicity ampli-
tudes. In addition, the importance of |H0|2 is demoted by the
explicit q2 factor in front of it and the different weight in

Fig. 2 Same as Fig. 1 but for the 3
2

− → 1
2

+
transition. Top panel: all

three radii at maximal value (43); other panels: two radii at max, third
at zero
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Fig. 3 Same as Fig. 2 but with less many radii put at maximum value
(43). Bottom panel: all radii put to zero; other panels: one radius at
max, rest at zero

Table 2 Same as Table 1 but for the J P = 3
2

−
initial state

(〈r2〉0; 〈r2〉+; 〈r2〉−
)

GeV−2 A C 2
3 A + 2AC

(
0; 25; 25

)
0.00267 1.55 0.0101

(
0; 0; 25

)
0.00270 1.42 0.00945

(
25; 25; 25

)
0.00290 1.35 0.00976

(
0; 25; 0

)
0.00272 1.31 0.00894

(
25; 0; 25

)
0.00285 1.29 0.00924

(
0; 0; 0

)
0.00273 1.28 0.00881

(
25; 25; 0

)
0.00282 1.23 0.00881

(
25; 0; 0

)
0.00281 1.22 0.00870

QED type 0.00292 1.13 0.00855

the angular average, an effect already observed for the spin-
1/2 case of the previous subsection. Again, we believe that
the plots of Figs. 2 and 3 are important for experimentalists
to judge how accurate their results must be to disentangle
extended from structureless objects.

We turn to the angular dependence. Formulae (46) and
(47) can again be used and the dependence of the parameters
A and C on the radii is collected in Table 2.

Similar to the spin-1/2 case of the previous subsection we
observe a variation in A of about 10%, but no clear tendency
of the impact of finite radii.

Concerning the parameter C we observe variations of up
to 30%. The value ofC is increased for larger values of 〈r2〉−
or 〈r2〉+ and decreased for a larger value of 〈r2〉0. The impact
of 〈r2〉+ is less pronounced than the impact of 〈r2〉−, which
we explain again by the explicit factor of 3 in (7).

For the integrated Dalitz decay width, normalized to the
photon decay width, we predict 0.9–1%, slightly larger than
our prediction for the Λ(1405) of the previous subsection.
We attribute this to the larger phase space available for the
heavier Λ(1520).

5 Further discussion, summary and outlook

We have provided a comprehensive framework that first con-
siders the most general electromagnetic transition form fac-
tors, free of kinematical constraints. Those form factors are
perfectly suited for a dispersive representation [4], a perspec-
tive that we might explore in the future. We have related these
form factors to helicity amplitudes and shown how they make
their appearance in the decay rates of the processesY ∗ → Yγ

and Y ∗ → Y e−e+. We covered the cases where the initial
hyperon Y ∗ can have spin 1/2 or 3/2. The final hyperon Y
was assumed to have spin 1/2. All parity combinations have
been covered.

Of course, these relations are in principle not new and
easy to deduce, e.g., from [12]. Yet, we have decided to
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spell out all definitions and conventions in detail to keep the
work self-contained and to facilitate comparisons between
different works. We have further extended the framework to
include also a final weak decay of the ground-state hyperon
Y , very much in spirit of [25], though with different kine-
matics. We have stressed that the emerging interference term
between a helicity flip and the non-flip amplitude exists also
in the Dalitz decay region.

In a second step, we have focused on the specific transi-
tions of Λ(1405) and Λ(1520) to the ground-state Λ. In view
of the not too large kinematical range that is covered by the
Dalitz decays we have parametrized the helicity amplitudes
in terms of transition radii. Such radii are commonly used for
the study of form factors at low energies, e.g. for the electric
or magnetic form factors of proton and neutron, i.e. for their
helicity non-flip or flip amplitudes. As a function of such
transition radii, we have investigated how much accuracy is
needed for an experiment to discriminate between hypothet-
ical structureless hyperons and a more realistic case. Indeed,
we regard the scenario where all radii are non-vanishing as
the most realistic one.

Concerning the dependence on the invariant mass of the
electron-positron pair, our setup shows a significant deviation
from the structureless QED type case, in particular in the q2

range above 0.01 GeV2 for the transition from Λ(1405) to Λ

and above 0.02 GeV2 for the transition from Λ(1520) to Λ.
We see also significant differences for the parameter C that
parametrizes the deviation of the angular dependence from a
pure cos2 distribution.

Of course, it is completely straightforward to extend
this radius analysis also to the electromagnetic transitions
Λ(1405) → Σ0, Λ(1405) → Σ0(1385), Λ(1520) →
Σ0, and with a little generalization also to Λ(1520) →
Σ0(1385). But the smaller the mass difference between ini-
tial and final hyperon, the less additional information is con-
tained in the Dalitz decays relative to the real-photon case.
Therefore we have focused on the cases where the final
hyperon is as light as possible.

More generally, the framework provided here can also be
applied to double- or triple-strange hyperon resonances and
to baryon resonances where strange quarks are replaced by
heavier quarks.
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Appendix A: Toy-model Lagrangians

The following Lagrangians are hermitian and invariant with
respect to charge conjugation symmetry. They are also parity
symmetric, but it is the first two properties that make the
coupling constants real-valued. Note that we do not make
use of these Lagrangians in our actual calculations. In this
sense, these are toy-model Lagrangians. But we use them to
motivate the appearance or absence of i’s for our definitions
of the transition form factors Hj , H̃ j , Fj , and F̃j .

A real-valued contribution to H1 as introduced in (2)
comes from a tree-level calculation based on

LH1 = a1
(
Ψ̄ γ μFμνΨ

ν + Ψ̄ νγ μFμνΨ
)

, (A.1)

where a1 ∈ R. In the same way one finds a contribution from

LH2 = ia2
(
Ψ̄ Fμν∂

μΨ ν − ∂μΨ̄ νFμνΨ
)

(A.2)

for H2 and from

LH3 = ia3
(
Ψ̄ ∂μFμνΨ

ν − Ψ̄ ν∂μFμνΨ
)

(A.3)

for H3. Also here the coupling constants must be real,
a2, a3 ∈ R.

Similarly, the Lagrangians

L̃H1 = i ã1
(
Ψ̄ γ μγ5FμνΨ

ν − Ψ̄ νγ μγ5FμνΨ
)

, (A.4)

L̃H2 = ã2
(
Ψ̄ γ5Fμν∂

μΨ ν − ∂μΨ̄ νγ5FμνΨ
)

, (A.5)

L̃H3 = ã3
(
Ψ̄ γ5∂

μFμνΨ
ν − Ψ̄ νγ5∂

μFμνΨ
)

(A.6)

contribute to H̃1, H̃2, H̃3, respectively. We recall that the latter
transition form factors have been introduced in (25). The
Lagrangians are only hermitian and invariant with respect
to charge conjugation, if the coupling constants are real, i.e.
ã1, ã2, ã3 ∈ R.

Turning to spin-1/2, we have the Lagrangians

LF2 = b2
(
Ψ̄YσμνF

μνΨY ∗ + Ψ̄Y ∗σμνF
μνΨY

)
(A.7)

and

LF3 = b3
(
Ψ̄Y γμ∂νF

μνΨY ∗ + Ψ̄Y ∗γμ∂νF
μνΨY

)
(A.8)
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contributing with real-valued results to F2 and F3, respec-
tively. Finally

L̃F2 = i b̃2
(
Ψ̄Yσμνγ5F

μνΨY ∗ + Ψ̄Y ∗σμνγ5F
μνΨY

)
(A.9)

and

L̃F3 = i b̃3
(
Ψ̄Y γμγ5∂νF

μνΨY ∗ − Ψ̄Y ∗γμγ5∂νF
μνΨY

)

(A.10)

contribute to F̃2 and F̃3, respectively. Hermiticity and charge
conjugation symmetry demand b2, b3, b̃2, b̃3 ∈ R.

An explanation is in order concerning the labels 2 and 3 for
the transition form factors Fi and F̃i . In a (here formal) low-
energy counting scheme where the hyperons’ three-momenta
and the electromagnetic potentials and their four-momenta
are counted as soft and of same size, the Lagrangians (A.7)
and (A.9) are of second order, while (A.8) and (A.10) are of
third order.

In addition, the construction in (A.7) resembles the Pauli
term that describes the anomalous magnetic moment of
a spin-1/2 state, here generalized to transitions. For the
nucleon, the Pauli form factor is often called F2; see e.g.
[19] and references therein.

For the transitions involving spin-3/2 initial states this for-
mal power counting leads to a mismatch between the two par-
ity sectors, cf. e.g. [4,51]. Therefore we have just enumerated
the transition form factors Hi and H̃i from 1 to 3.

Appendix B: High-energy behavior

In this appendix we use the methods of [13] to present
the high-energy behavior of all transition form factors. This
procedure uses the implicit assumption that the considered
hyperons have a minimal quark content of three quarks. For
the validity of the framework, it does not matter how large the
overlap of the physical state with a three-quark configuration
is [15], as long as it is non-zero.

The quark counting rules are derived for large space-like
photon virtuality. Therefore it is convenient to introduce the
large positive quantity Q2 := −q2 and Q := √

Q2. One
obtains

H+(−Q2) ∼ 1

Q4 , H0(−Q2) ∼ 1

Q6 , H−(−Q2) ∼ 1

Q6 ;

H̃+(−Q2) ∼ 1

Q4 , H̃0(−Q2) ∼ 1

Q6 , H̃−(−Q2) ∼ 1

Q6 ;

F+(−Q2) ∼ 1

Q4 , F0(−Q2) ∼ 1

Q6 ;

F̃+(−Q2) ∼ 1

Q4 , F̃0(−Q2) ∼ 1

Q6 , (B.11)

which leads to

H1(−Q2) ∼ 1

Q6 , H2(−Q2) ∼ 1

Q8 , H3(−Q2) ∼ 1

Q8 ;

H̃1(−Q2) ∼ 1

Q6 , H̃2(−Q2) ∼ 1

Q8 , H̃3(−Q2) ∼ 1

Q8 ;

F2(−Q2) ∼ 1

Q6 , F3(−Q2) ∼ 1

Q6 ;

F̃2(−Q2) ∼ 1

Q6 , F̃3(−Q2) ∼ 1

Q6 .

(B.12)

Appendix C: Kinematical constraints and partial waves

In the main part of this paper we use helicity amplitudes,
i.e. amplitudes characterized by the helicities of the initial
and final states and by total angular momentum [52]. Instead
of helicities, one could also use spin and orbital angular
momentum. This characterization scheme is commonly used
in non-relativistic physics (where the spin-orbit coupling is
suppressed). While we find the helicity amplitudes in gen-
eral more practical for our purpose, the classification using
orbital angular momentum l is actually helpful where the
considered system becomes non-relativistic. For the Dalitz
decays Y ∗ → Y e+e−, this happens at the end of the phase
space, i.e. for q2 ≈ (mY ∗ − mY )2. Here initial and final
hyperon are at rest and their mass difference goes entirely
into the back-to-back motion of the electron-positron pair.
Note that we consider the frame where the virtual photon is
at rest and that we denote the hyperons’ momentum by pz ,
cf. (8).

In Sect. 2.1 we discuss the case of opposite parity of initial
spin-3/2 and final spin-1/2 hyperon. In this case, the orbital
angular momentum l must be even. In total we find three
partial waves: l = 0 and s = 3/2; l = 2 and s = 1/2; l = 2
and s = 3/2. Here s denotes the total spin built from the
spin 1 of the photon and the spin 1/2 of the final hyperon.
Since the amplitude for orbital angular momentum l scales
with plz , one amplitude (the s-wave) becomes dominant at
the end of the phase space. This must find its expression in a
relation between the helicity amplitudes. Indeed, this is what
the kinematical constraint (4) means physically.

To complete this discussion, we note that due to crossing
symmetry the same amplitude that describes Y ∗ → Y e+e−
can also be used to describe e+e− → Y Ȳ ∗. A non-relativistic
situation emerges at the production threshold q2 ≈ (mY ∗ +
mY )2. Since the antifermion Ȳ ∗ has opposite parity to Y ∗,
the allowed orbital angular momentum l must now be odd.
The three possible partial waves are l = 1 and s = 1; l = 1
and s = 2; l = 3 and s = 2, where now s denotes the total
spin built from the spin 3/2 of the antihyperon and the spin
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1/2 of the hyperon. At threshold, the two p-waves dominate
over the f -wave. Thus one of the three helicity amplitudes
must be related to the other two. This is the physics content
of the kinematical constraint (5).

Analogous considerations can be used for the other spin-
parity combinations that we discuss in this paper. For every
case, one can understand where and how many kinematical
constraints emerge for the helicity amplitudes.

Appendix D: General structure of the squared matrix
element for the four-body decay

We consider the decay Y ∗ → Y e+e− → Nπ e+e−. The
spin summed/averaged squared matrix element 〈|M4|2〉 can
be expressed in terms of the four four-vectors pY , pN ,
q = pe− + pe+ and ke = pe− − pe+ . The Lorentz invariant
combinations that cannot be expressed solely by masses are
q2, ke · pY , q · pN , ke · pN and εμναβ kμ

e pν
Y pα

N qβ .
In the following we will show that the general structure

is

〈|M4|2〉 = J1(q
2) + J2(q

2) (ke · pY )2

+ J3(q
2) ke · pY εμναβ kμ

e pν
Y pα

N qβ . (D.13)

In particular, we will show that 〈|M4|2〉 does not depend on
q · pN or ke · pN .

An evaluation of the lepton trace shows that ke can only
appear pairwise. It is also easy to see that pN can appear
at most linearly. This defines already the structure with the
Levi-Civita tensor. No terms ∼ q · pN , ke · pN could show
up there, because there is already one pN contracted with
the Levi-Civita tensor. It remains to be shown that any term
without a Levi-Civita tensor does not depend on q · pN or
ke · pN .

The Levi-Civita structure emerges from an odd number
of γ5 matrices while any other structure stems from terms
with an even number of γ5 matrices. Consequently, the weak
coupling constants A and B from (15) appear each linearly in
J3, while the contributions to any other structure are ∼ |A|2
or ∼ |B|2. Thus one has to deal there either with the A-type
interaction or with the B-type interaction, but not with both at
the same time. Both interactions are formally parity invariant
if one considers the nucleon as having opposite or the same
parity as the Y . Thus one can use parity arguments to show
that any term that does not contain the Levi-Civita tensor will
be independent of q · pN and ke · pN .

Now we consider the rest frame of the Y and a spin quan-
tization axis along the motion of the nucleon. In this frame,
the spin of the Y must be identical to the spin of the nucleon.
Let Mw(sN , sY ) be the decay matrix element caused by the
A- or B-interaction (exclusive “or”). Here sN/Y is the spin

of the nucleon or Y , respectively. We find

Mw(sN , sY ) ∼ δsN ,sY ,

|Mw(+1/2,+1/2)| = |Mw(−1/2,−1/2)| . (D.14)

Let Ms(. . . , sY ) denote the decay matrix element for the
decay Y ∗ → Y e+e−. The dots denote the spins of the other
states. We do not need to specify them further. In total we
find

〈|M4|2〉A or B

∼
∑

...

∑

sN ,sY ,s′Y

Mw(sN , sY )Ms(. . . , sY )

×M∗
s (. . . , s

′
Y )M∗

w(sN , s′
Y )

=
∑

...

∑

sN

Mw(sN , sN )M∗
w(sN , sN )

×Ms(. . . , sN )M∗
s (. . . , sN )

=
∑

...

∑

sN

|Mw(sN , sN )|2 |Ms(. . . , sN )|2

=
∑

...

(
|Mw(+1/2,+1/2)|2 |Ms(. . . ,+1/2)|2

+|Mw(−1/2,−1/2)|2 |Ms(. . . ,−1/2)|2
)

= |Mw(+1/2,+1/2)|2
×

∑

...

(
|Ms(. . . ,+1/2)|2 + |Ms(. . . ,−1/2)|2

)

= 1

2

(
∑

sN ,sY

|Mw(sN , sY )|2
)⎛

⎝
∑

s′Y ,...

|Ms(. . . , s
′
Y )|2

⎞

⎠ .

(D.15)

Now we have reached a product of two spin-summed squares
of matrix elements. Both are Lorentz invariant and can be
evaluated in any frame. The first one does not depend on q
or ke. The second does not depend on pN . Therefore, the
products q · pN and ke · pN do not appear.

We note again that this line of reasoning only works if
one considers solely the A-type interaction or solely the B-
type interaction. It does not work for interference terms ∼
AB∗, A∗B. But such interference terms are accompanied by
an odd number of γ5 matrices and therefore give rise to a
Levi-Civita tensor.
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