Skip to main content
Log in

Low-energy spectra of mirror mass-19 nuclei with a collective coupled-channel scattering model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The spectra of mass-19 nuclei are unusual and pose a challenge for theoretical models of their structure. Herein the Multi-Channel Algebraic Scattering (MCAS) method has been used with a collective (vibrational model) description of the low-excitation states of \(^{18}\)O and \(^{18}\)Ne to describe the spectra of four mass-19 nuclei, specifically the mirror pairs (\(^{19}\)O, \(^{19}\)Na) and (\(^{19}\)F, \(^{19}\)Ne). This coupled-channel approach allows for the effects of the Pauli principle to be included using non-local orthogonalizing pseudo-potentials. By the coupling of neutrons to the core nuclei, we obtain states in \(^{19}\)O (a neutron coupled to \(^{18}\)O) and \(^{19}\)Ne (a neutron coupled to \(^{18}\)Ne). Mirror symmetry and addition of the Coulomb interaction gives states in \(^{19}\)F (a proton coupled to \(^{18}\)O) and \(^{19}\)Na (a proton coupled to \(^{18}\)Ne). However, the same compound nuclei may be described as the coupling of more complicated nuclear clusters. We obtain the states in \(^{19}\)F as the coupling of an \(\alpha \) to \(^{15}\)N, as well as the coupling of \(^3\)H to \(^{16}\)O. Similarly, states in \(^{19}\)Ne have been obtained from the coupling of an \(\alpha \) to \(^{15}\)O and of the coupling of \({}^3\)He to \(^{16}\)O. Finally, as the method allows extraction of scattering matrices, it has been used to evaluate cross sections for the elastic scattering of low-energy neutrons from \(^{18}\)O and of low-energy \(\alpha \) particles from \(^{15}\)O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Authors’ comment: All data generated or analysed during this study are included in this published article and references given accordingly.]

References

  1. D.R. Tilley, H.R. Weller, C.M. Cheves, R.M. Chasteler, Nucl. Phys. A 595, 1 (1995)

    Article  ADS  Google Scholar 

  2. W.C. Haxton, B.F. Gibson, E.M. Henley, Phys. Rev. Lett. 45, 1677 (1980)

    Article  ADS  Google Scholar 

  3. B.A. Brown, W.A. Richter, N.S. Godwin, Phys. Rev. Lett. 45, 1681 (1980)

    Article  ADS  Google Scholar 

  4. B.M. Rebeiro et al., Phys. Rev. C 99, 065502 (2019)

    Article  ADS  Google Scholar 

  5. L.D. Skouras, J.V. Varvitsiotis, Nucl. Phys. A 513, 239 (1990)

    Article  ADS  Google Scholar 

  6. P.J. Brussaard, P.W.M. Glaudemans, Shell model applications in nuclear spectroscopy (North-Holland Publishing Company, Amsterdam, 1977)

    Google Scholar 

  7. A.J.H. Donné et al., Nucl. Phys. A 455, 453 (1986)

    Article  ADS  Google Scholar 

  8. J.P. Davidson, Collective models of the nucleus (Academic Press, New York, 1968)

    Google Scholar 

  9. M. Kimura, N. Furutachi, Phys. Rev. C 83, 044304 (2011)

    Article  ADS  Google Scholar 

  10. T. Sakuda, F. Nemoto, Prog. Theo. Phys. 62, 1274 (1979)

    Article  ADS  Google Scholar 

  11. T. Sakuda, Prog. Theo. Phys. 87, 1159 (1992)

    Article  ADS  Google Scholar 

  12. A.C. Merchant, Nucl. Phys. A 417, 109 (1984)

    Article  ADS  Google Scholar 

  13. G. Lévai, J. Cseh, Phys. Rev. C 44, 152 (1991)

    Article  ADS  Google Scholar 

  14. M. Dufour, P. Descouvemont, Nucl. Phys. A 672, 153 (2000)

    Article  ADS  Google Scholar 

  15. M. La Cognata et al., Phys. Rev. C 99, 034301 (2019)

    Article  ADS  Google Scholar 

  16. D. Torresi et al., Phys. Rev. C 96, 044317 (2017)

    Article  ADS  Google Scholar 

  17. R. Otani et al., Phys. Rev. C 90, 034316 (2014)

    Article  ADS  Google Scholar 

  18. S. Ohkubo, Y. Hirabayashi, Phys. Rev. C 77, 041303(R) (2008)

    Article  ADS  Google Scholar 

  19. H.G. Bohlen et al., Euro. Phys. J. A 31, 279 (2007)

    Article  ADS  Google Scholar 

  20. S. Karataglidis, K. Murulane, Phys. Rev. C 101, 064316 (2020)

    Article  ADS  Google Scholar 

  21. K. Amos, L. Canton, G. Pisent, J.P. Svenne, D. van der Knijff, Nucl. Phys. A 728, 65 (2003)

    Article  ADS  Google Scholar 

  22. S. Karataglidis, K. Amos, P.R. Fraser, L. Canton, A new development at the intersection of nuclear structure and reaction theory (Springer Nature, Switzerland, 2019)

    Book  MATH  Google Scholar 

  23. K. Amos, S. Karataglidis, D. van der Knijff, L. Canton, G. Pisent, J.P. Svenne, Phys. Rev. C 72, 064604 (2005)

    Article  ADS  Google Scholar 

  24. L. Canton, G. Pisent, J.P. Svenne, D. van der Knijff, K. Amos, S. Karataglidis, Phys. Rev. Lett. 94, 122503 (2005)

    Article  ADS  Google Scholar 

  25. Y.A. Lashko, G.F. Filippov, L. Canton, Ukr. J. Phys. 60, 406 (2015)

    Article  Google Scholar 

  26. K. Amos, L. Canton, P.R. Fraser, S. Karataglidis, J.P. Svenne, D. van der Knijff, Nucl. Phys. A 912, 7 (2013)

    Article  ADS  Google Scholar 

  27. D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. A 564, 1 (1993)

    Article  ADS  Google Scholar 

  28. J.P. Svenne, L. Canton, K. Amos, P.R. Fraser, S. Karataglidis, G. Pisent, D. van der Knijff, Phys. Rev. C 95, 034305 (2017)

    Article  ADS  Google Scholar 

  29. P.R. Fraser, K. Amos, L. Canton, S. Karataglidis, D. van der Knijff, J.P. Svenne, Euro. Phys. J. A 51, 110 (2015)

    Article  ADS  Google Scholar 

  30. P.R. Fraser, A.S. Kadyrov, K. Massen-Hane, K. Amos, L. Canton, S. Karataglidis, D. van der Knijff, I. Bray, J. Phys. G 43, 095104 (2016)

    Article  ADS  Google Scholar 

  31. I. Angeli, K.P. Marinova, At. Data and Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  32. H. de Vries, C.W. de Jager, C. de Vries, At. Data and Nucl. Data Tables 36, 495 (1987)

    Article  ADS  Google Scholar 

  33. C.W. de Jager, H. de Vries, C. de Vries, At. Data and Nucl. Data Tables 14, 479 (1974)

    Article  ADS  Google Scholar 

  34. S. Raman et al., At. Data and Nucl. Data Tables 36, 1 (1987)

    Article  ADS  Google Scholar 

  35. R.H. Spear, At. Data and Nucl. Data Tables 42, 55 (1989)

    Article  ADS  Google Scholar 

  36. J.L. Groh, R.P. Singhal, H.S. Caplan, B.S. Dolbilkin, Can. J. Phys. 40, 2743 (1971)

    Article  ADS  Google Scholar 

  37. OXBASH-MSU (the Oxford-Buenos-Aries-Michigan State University shell model code). A. Etchegoyen, W.D.M. Rae, N.S. Godwin (MSU version by B.A. Brown), (1986). B.A. Brown, A. Etchegoyen, and W.D.M. Rae, MSUCL Report Number 524 (1986)

  38. E.K. Warburton, B.A. Brown, Phys. Rev. C 46, 923 (1992)

    Article  ADS  Google Scholar 

  39. S. Karataglidis, K. Amos, P.R. Fraser, L. Canton, J.P. Svenne, Nucl. Phys. A 813, 23 (2008)

    Article  Google Scholar 

  40. S. Karataglidis, P.J. Dortmans, K. Amos, R. de Swiniarski, Phys. Rev. C 52, 861 (1995)

    Article  ADS  Google Scholar 

  41. K. Amos, P.J. Dortmans, H.V. von Geramb, S. Karataglidis, J. Raynal, Adv. Nucl. Phys. 25, 275 (2000)

  42. P.R. Fraser, K. Amos, L. Canton, S. Karataglidis, D. van der Knijff, J.P. Svenne, Phys. Rev. C 100, 024609 (2019)

    Article  ADS  Google Scholar 

  43. J.H. Kelley, G.C. Sheu, From ENDSF data base as of 7-29-2015. (2015). Version available at, http://www.nndc.bnl.gov/ensarchive

  44. J.P. Svenne, K. Amos, S. Karataglidis, D. van der Knijff, L. Canton, G. Pisent, Phys. Rev. C 73, 027601 (2006)

    Article  ADS  Google Scholar 

  45. L. Canton, G. Pisent, J.P. Svenne, K. Amos, S. Karataglidis, Phys. Rev. Lett. 96, 072502 (2006)

    Article  ADS  Google Scholar 

  46. F.J. Vaughn, H.A. Grench, W.L. Imhof, J.H. Rowland, M. Walt, Nucl. Phys. 64, 336 (1965)

    Article  Google Scholar 

  47. P.E. Koehler, H.D. Knox, D.A. Resler, R.O. Lane, G.F. Auchampaugh, Nucl. Phys. A 453, 429 (1986)

    Article  ADS  Google Scholar 

  48. L. Canton, L.G. Levchuk, Nucl. Phys. 808, 192 (2008)

    Article  Google Scholar 

  49. K.J. Cook et al., Phys. Rev. Lett. 124, 212503 (2020)

    Article  ADS  Google Scholar 

  50. J. Muhka et al., Phys. Rev. Lett. 99, 118250 (2007)

    Google Scholar 

  51. L. Lafayette, G. Sauter, Linh Vu, B. Meade, Spartan performance and flexibility: An hpc-cloud chimera. (2016). OpenStack Summit, Barcelona, (Openstack Newton). http://doi.org/10.4225/49/58ead90dceaaa

Download references

Acknowledgements

We thank the Staff at the High-Performance Computing Centre of the University of Melbourne, in particular Lev Lafayette, Sean Crosby, Greg Sauter, Linh Vu and Bernard Meade, for the use of SPARTAN [51] in making all the calculations of results presented herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Amos.

Additional information

Communicated by Arnau Rios Huguet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amos, K., Fraser, P.R., Karataglidis, S. et al. Low-energy spectra of mirror mass-19 nuclei with a collective coupled-channel scattering model. Eur. Phys. J. A 57, 165 (2021). https://doi.org/10.1140/epja/s10050-021-00479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00479-8

Navigation