Skip to main content
Log in

A quenched 2-flavour Einstein–Maxwell–Dilaton gauge-gravity model

  • Letter
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We extend earlier work by introducing an Einstein–Maxwell–Dilaton (EMD) action with two quark flavours. We solve the corresponding equations of motion in the quenched approximation (probe quark flavours) via the potential reconstruction method in presence of a background magnetic field in search for a self-consistent dual magnetic AdS/QCD model. As an application we discuss the deconfinement transition temperature confirming inverse magnetic catalysis, whilst for moderate values of the magnetic field also the entropy density compares relatively well with corresponding lattice data in the vicinity of the transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This a theoretical study and no experimental data has been listed.]

Notes

  1. Concretely, we have \(T_\text {crit}=0.268~\text {GeV}\), in the ballpark of [30].

References

  1. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    Article  ADS  Google Scholar 

  2. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925–5932 (2009)

  3. A. Bzdak, V. Skokov, Phys. Lett. B 710, 171 (2012)

    Article  ADS  Google Scholar 

  4. W.-T. Deng, X.-G. Huang, Phys. Rev. C 85, 044907–024911 (2012)

    Article  ADS  Google Scholar 

  5. L. McLerran, V. Skokov, Nucl. Phys. A 929, 184 (2014)

    Article  ADS  Google Scholar 

  6. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)

    Article  MathSciNet  Google Scholar 

  7. K. Tuchin, Phys. Rev. C 88(2), 024911 (2013)

    Article  ADS  Google Scholar 

  8. D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee, Lect. Notes Phys. 871, 1 (2013)

    Article  ADS  Google Scholar 

  9. V.A. Miransky, I.A. Shovkovy, Phys. Rep. 576, 1 (2015)

    Article  ADS  Google Scholar 

  10. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo, JHEP 02, 044 (2012)

    Article  ADS  Google Scholar 

  11. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, Phys. Rev. D 86, 071502 (2012)

    Article  ADS  Google Scholar 

  12. A.J. Mizher, M.N. Chernodub, E.S. Fraga, Phys. Rev. D 82, 105016 (2010)

    Article  ADS  Google Scholar 

  13. M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, Phys. Rev. D 89(11), 116011 (2014)

    Article  ADS  Google Scholar 

  14. K. Fukushima, Y. Hidaka, Phys. Rev. Lett. 110(3), 031601 (2013)

    Article  ADS  Google Scholar 

  15. N. Callebaut, D. Dudal, Phys. Rev. D 87(10), 106002 (2013)

    Article  ADS  Google Scholar 

  16. R. Rougemont, R. Critelli, J. Noronha, Phys. Rev. D 93(4), 045013 (2016)

    Article  ADS  Google Scholar 

  17. K.A. Mamo, JHEP 05, 121 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. D. Dudal, D.R. Granado, T.G. Mertens, Phys. Rev. D 93(12), 125004 (2016)

    Article  ADS  Google Scholar 

  19. D. Giataganas, U. Gürsoy, J.F. Pedraza, Phys. Rev. Lett. 121(12), 121601 (2018)

    Article  ADS  Google Scholar 

  20. U. Gürsoy, M. Järvinen, G. Nijs, Phys. Rev. Lett. 120(24), 242002 (2018)

    Article  ADS  Google Scholar 

  21. D.M. Rodrigues, D. Li, E. Folco Capossoli, H. Boschi-Filho, Phys. Rev. D 98 no.10 106007 (2018)

  22. H. Bohra, D. Dudal, A. Hajilou, S. Mahapatra, Phys. Lett. B 801, 135184 (2020)

    Article  MathSciNet  Google Scholar 

  23. H. Bohra, D. Dudal, A. Hajilou, S. Mahapatra, arXiv:2010.04578 [hep-th]

  24. A. Ballon-Bayona, J.P. Shock, D. Zoakos, JHEP 10, 193 (2020)

    Article  ADS  Google Scholar 

  25. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843–882 (2005)

    Article  ADS  Google Scholar 

  26. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 114, 1083–1118 (2005)

    Article  ADS  Google Scholar 

  27. J. Alanen, K. Kajantie, V. Suur-Uski, Phys. Rev. D 80, 126008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. S.S. Gubser, Adv. Theor. Math. Phys. 4, 679 (2000)

    Article  MathSciNet  Google Scholar 

  29. I. Aref’eva, K. Rannu, P. Slepov, Phys. Lett. B 792, 470–475 (2019)

    Article  ADS  Google Scholar 

  30. B. Lucini, M. Teper, U. Wenger, JHEP 01, 061 (2004)

    Article  ADS  Google Scholar 

  31. G.S. Bali, F. Bruckmann, G. Endrödi, S.D. Katz, A. Schäfer, JHEP 08, 177 (2014)

    Article  ADS  Google Scholar 

  32. E. Megias, H.J. Pirner, K. Veschgini, Phys. Rev. D 83, 056003 (2011)

    Article  ADS  Google Scholar 

  33. D. Dudal, S. Mahapatra, JHEP 04, 031 (2017)

    Article  ADS  Google Scholar 

  34. D. Dudal, S. Mahapatra, JHEP 07, 120 (2018)

    Article  ADS  Google Scholar 

  35. P. Jain, S. Mahapatra, Phys. Rev. D 102, 126022 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  36. I.Y. Aref’eva, A. Patrushev, P. Slepov, JHEP 07, 043 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Guest Editors for their kind invitation to contribute to this Topical Issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dudal.

Additional information

Communicated by Carsten Urbach

The work of S.M. is supported by the Department of Science and Technology, Government of India under the Grant Agreement number IFA17-PH207 (INSPIRE Faculty Award).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudal, D., Hajilou, A. & Mahapatra, S. A quenched 2-flavour Einstein–Maxwell–Dilaton gauge-gravity model. Eur. Phys. J. A 57, 142 (2021). https://doi.org/10.1140/epja/s10050-021-00461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00461-4

Navigation