Skip to main content
Log in

Study of quasi-elastic scattering of \(^{17}\hbox {F}+^{208}\hbox {Pb}\) at energies around Coulomb barrier

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Quasi-elastic scattering angular distribution for the \(94.5\ \hbox {MeV}\ ^{17}\hbox {F}\) radioactive ion beam on the \(^{208}\hbox {Pb}\) target has been measured. To describe the experimental quasi-elastic scattering angular distribution and explore the reaction dynamic, firstly, the optical potentials with the double-folding São Paulo and Akyüz Winther potentials for both real and imaginary parts were used to analyze the experimental data. It is observed that both theoretical angular distributions are very similar. The optical model results describe reasonably the experimental data until 100\(^\circ \) but underpredict the data for larger angles. Secondly, the continuum discretized coupled channel method (CDCC) was used to study the effect of the breakup channel on the elastic scattering. The double-folding São Paulo and Akyüz Winther potentials were used as nuclear interactions giving again similar results. The agreement with the data is slightly improved at intermediate angles. The sensibility of the CDCC effects upon the nuclear interaction potential was checked. Finally, the influence of inelastic states of both projectile and target, the one-proton, one-neutron, two-neutron and \(\alpha \) transfer channels on the quasi-elastic scattering angular distribution is analyzed in the frame of the coupled channel and coupled reaction channel methods, respectively. It is observed that the coupling to the first excited state of \(^{17}\hbox {F}\) is the one that affects more the elastic scattering, although the inelastic channels of the target also influence it when compared with the optical model results. The effect of the transfer channels on the quasi-elastic angular distribution is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. L.F. Canto, P.R.S. Gomes, R. Donangelo, M.S. Hussein, Phys. Rep. 424, 1 (2006)

    Article  ADS  Google Scholar 

  2. B.B. Back, H. Esbensen, C.L. Liang, K.E. Rehm, Rev. Mod. Phys. 86, 317 (2014)

    Article  ADS  Google Scholar 

  3. L.F. Canto, P.R.S. Gomes, R. Donangelo, J. Lubian, M.S. Hussein, Phys. Rep. 596, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Keeley, N. Alamanos, K.W. Kemper, K. Rusek, Prog. Part. Nucl. Phys. 63, 396 (2009)

    Article  ADS  Google Scholar 

  5. E.O.N. Zevallos et al., Phys. Rev. C 99, 064613 (2019)

    Article  ADS  Google Scholar 

  6. E.F. Aguilera, P. Amador-Valenzuela, E. Martinez-Quiroz, D. Lizcano, P. Rosales, H. Garcia-Martinez, A. Gomez-Camacho, J.J. Kolata, A. Roberts, L.O. Lamm et al., Phys. Rev. Lett. 107, 092701 (2011)

    Article  ADS  Google Scholar 

  7. E.F. Aguilera et al., Phys. Rev. C 93, 034613 (2016)

    Article  ADS  Google Scholar 

  8. J.F. Liang et al., Phys. Rev. C 65, 051603 (2002)

    Article  ADS  Google Scholar 

  9. J.F. Liang et al., Phys. Lett. B 22, 681 (2009)

    Google Scholar 

  10. U. Umbelino et al., Phys. Rev. C 99, 064617 (2019)

    Article  ADS  Google Scholar 

  11. E.F. Aguilera, J.J. Kolata, F.M. Nunes, F.D. Becchetti, P.A. DeYoung, M. Goupell, V. Guimaraes, B. Hughey, M.Y. Lee, D. Lizcano et al., Phys. Rev. Lett. 84, 5058 (2000)

    Article  ADS  Google Scholar 

  12. E.F. Aguilera, J.J. Kolata, F.D. Becchetti, P.A. DeYoung, J.D. Hinnefeld, A. Horvath, L.O. Lamm, H.Y. Lee, D. Lizcano, E. Martinez-Quiroz et al., Phys. Rev. C 63, 061603(R) (2001)

    Article  ADS  Google Scholar 

  13. K.E. Rehm, H. Esbensen, C.L. Jiang, B.B. Back, F. Borasi, B. Harss, R.V.F. Janssens, V. Nanal, J. Nolen, R.C. Pardo et al., Phys. Rev. Lett. 81, 3341 (1998)

    Article  ADS  Google Scholar 

  14. R. Raabe, J.L. Sida, J.L. Charvet, N. Alamanos, C. Angulo, J.M. Casandjian, S. Courtin, A. Drouart, D.J.C. Durand, P. Figuera et al., Nature (London) 431, 823 (2004)

    Article  ADS  Google Scholar 

  15. J.J. Kolata, V. Guimaraes, D. Peterson, P. Santi, R. White-Stevens, P.A. DeYoung, G.F. Peaslee, B. Hughey, B. Atalla, M. Kern et al., Phys. Rev. Lett. 81, 4580 (1998)

    Article  ADS  Google Scholar 

  16. M. Cubero, J.P. Fernández-García, M. Rodrǵuez-Gallardo, L. Acosta, M. Alcorta, M.A.G. Alvarez, M.J.G. Borge, L. Acosta, M. Alcorta, M.A.G. Alvarez, M.J.G. Borge, L. Buchmann, C.A. Diget, H. Al Falou, B.R. Fulton, H.O.U. Fynbo, D. Galaviz, J. Gómez-Camacho, R. Kanungo, J.A. Lay, Buchmann, C.A. Diget, H. Al Falou, B.R. Fulton, H.O.U.M. Madurga, I. Martel, A.M. Moro, I. Mukha, T. Nilsson, A.M. Sánchez-Benítez, A. Shotter, O. Tengblad, P. Walden, Phys. Rev. Lett. 109, 262701 (2012)

    Article  ADS  Google Scholar 

  17. A. Di Pietro, G. Randisi, V. Scuderi, L. Acosta, F. Amorini, M.J.G. Borge, P. Figuera, M. Fisichella, L.M. Fraile, J. Gomez-Camacho, H. Jeppesen, M. Lattuada, I. Martel, M. Milin, A. Musumarra, M. Papa, M.G. Pellegriti, F. Perez-Bernal, R. Raabe, F. Rizzo, D. Santonocito, G. Scalia, O. Tengblad, D. Torresi, A. Maira Vidal, D. Voulot, F. Wenander, M. Zadro, Phys. Rev. Lett. 105, 022701 (2010)

    Article  ADS  Google Scholar 

  18. Y.Y. Yang et al., Phys. Rev. C 87, 044613 (2013)

    Article  ADS  Google Scholar 

  19. Y.Y. Yang et al., Phys. Rev. C 98, 044608 (2018)

    Article  ADS  Google Scholar 

  20. M. Mazzocco et al., Phys. Rev. C 100, 024602 (2019)

    Article  ADS  Google Scholar 

  21. J. Rangel, J. Lubian, L.F. Canto, P.R.S. Gomes, Phys. Rev. C 93, 054610 (2016)

    Article  ADS  Google Scholar 

  22. V. Morcelle et al., Phys. Rev. C 95, 014615 (2017)

    Article  ADS  Google Scholar 

  23. E.F. Aguilera et al., Phys. Rev. C 79, 021601(R) (2009)

    Article  ADS  Google Scholar 

  24. A. Gomez Camacho, E.F. Aguilera, P.R.S. Gomes, J. Lubian, Phys. Rev. C 84, 034615 (2011)

    Article  ADS  Google Scholar 

  25. R. Morlock et al., Phys. Rev. Lett. 79, 3837 (1997)

    Article  ADS  Google Scholar 

  26. C. Iliadis et al., Astrophys. J. Suppl. Ser. 142, 105 (2002)

    Article  ADS  Google Scholar 

  27. J.C. Blackmon, Phys. Rev. C 72, 034606 (2005)

    Article  ADS  Google Scholar 

  28. G.L. Zhang et al., Eur. Phys. J. A 48, 65 (2012)

    Article  ADS  Google Scholar 

  29. M. Mazzocco et al., Phys. Rev. C 82, 054604 (2010)

    Article  ADS  Google Scholar 

  30. G.L. Zhang et al., Phys. Rev. C 97, 044618 (2018)

    Article  ADS  Google Scholar 

  31. J.F. Liang et al., Phys. Rev. C 65, 051603 (2002)

    Article  ADS  Google Scholar 

  32. J.F. Liang et al., Phys. Rev. C 67, 044603 (2003)

    Article  ADS  Google Scholar 

  33. M. Romoli et al., Phys. Rev. C 69, 064614 (2004)

    Article  ADS  Google Scholar 

  34. J.W. Xia, W.L. Zhan, B.W. Wei et al., Nucl. Instr. Methods Phys. Res. A 488, 11 (2002)

    Article  ADS  Google Scholar 

  35. J.J. He, S.W. Xu, P. Ma et al., Nucl. Instr. Methods Phys. Res. A 680, 43 (2012)

    Article  ADS  Google Scholar 

  36. N.R. Ma, L. Yang, C.J. Lin et al., Eur. Phys. J. A 55, 87 (2019)

    Article  ADS  Google Scholar 

  37. N.R. Ma, C.J. Lin, J.S. Wang et al., Chin. Phys. C 11, 116004 (2016)

    Article  ADS  Google Scholar 

  38. G.X. Zhang, G.L. Zhang, C.J. Lin et al., Nucl. Instrum. Methods Phys. Res. A 846, 23 (2017)

    Article  ADS  Google Scholar 

  39. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  40. L.C. Chamon, D. Pereira, M.S. Hussein, M.A.C. Ribeiro, D. Galetti, Phys. Rev. Lett. 79, 5218 (1997)

    Article  ADS  Google Scholar 

  41. L.C. Chamon, B.V. Carlson, L.R. Gasques, D. Pereira, C. De Conti, M.A.G. Alvarez, M.S. Hussein, M.A. Candido Ribeiro, E.S. Rossi, C.P. Silva, Phys. Rev. C 66, 014610 (2002)

    Article  ADS  Google Scholar 

  42. M.A. Alvarez et al., Phys. Rev. C 100, 064602 (2019)

    Article  ADS  Google Scholar 

  43. R.A. Broglia, A. Winther, Heavy Ion Reactions (Westview Press, Boulder, 2004)

    Google Scholar 

  44. O. Akyüz, A. Winther, in Nuclear Structure of Heavy Ion Reaction, ed. by R.A. Broglia, C.H. Dasso, R.A. Ricci (North Holland, Amsterdam, 1981), Proc. E. Fermi Summer School of Physics

  45. M.A.G. Alvarez, L.C. Chamon, M.S. Hussein, D. Pereira, L.R. Gasques, E.S. Rossi Jr., C.P. Silva, Nucl. Phys. A 723, 93 (2003)

    Article  ADS  Google Scholar 

  46. L. Gasques, L. Chamon, P.R. Gomes, J. Lubian, Nucl. Phys. A 764, 135 (2006)

    Article  ADS  Google Scholar 

  47. G. Bertsch, J. Borysowicz, H. McManus, W.G. Love, Nucl. Phys. A 284, 399 (1977)

    Article  ADS  Google Scholar 

  48. J.M. Sparenberg, D. Baye, B. Imanishi, Phys. Rev. C 61, 054610 (2000)

    Article  ADS  Google Scholar 

  49. R. Morlock, R. Kunz, A. Mayer, M. Jaeger, A. Müller, J.W. Hammer, Phys. Rev. Lett. 79, 3837 (1997)

    Article  ADS  Google Scholar 

  50. N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, M. Yahiro, Phys. Rep. 154, 125–204 (1987)

    Article  ADS  Google Scholar 

  51. C.P. Silva, M.A.G. Alvarez, L.C. Chamon et al., Nucl. Phys. A 679, 287 (2001)

    Article  ADS  Google Scholar 

  52. https://www-nds.iaea.org/exfor/

  53. R.D. Rathmell, W. Haeberli, Nucl. Phys. A 178, 458 (1972)

  54. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

  55. J. Lubian, T. Correa, E.F. Aguilera, L.F. Canto, A. Gomez-Camacho, E.M. Quiroz, P.R.S. Gomes, Phys. Rev. C 79, 064605 (2009)

    Article  ADS  Google Scholar 

  56. J.A. Tostevin, F.M. Nunes, I.J. Thompson, Phys. Rev. C 63, 024617 (2001)

    Article  ADS  Google Scholar 

  57. J. Lubian, T. Correa, P.R.S. Gomes, L.F. Canto, Phys. Rev. C 78, 064615 (2008)

    Article  ADS  Google Scholar 

  58. F.M. Nunes, I.J. Thompson, Phys. Rev. C 57, R2818 (1998)

    Article  ADS  Google Scholar 

  59. G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, Oxford, 1983)

    Google Scholar 

  60. L.F. Canto, P.R.S. Gomes, J. Lubian, M.S. Hussein, P. Lotti, Eur. Phys. J. A 50, 89 (2014)

    Article  ADS  Google Scholar 

  61. L.F. Canto, R. Donangelo, M.S. Hussein, P. Lotti, J. Lubian, J. Rangel, Phys. Rev. C 98, 044617 (2018)

    Article  ADS  Google Scholar 

  62. M.R. Cortes, J. Rangel, J.L. Ferreira, J. Lubian, L.F. Canto, Phys. Rev. C 00, 004600 (2020)

    Google Scholar 

  63. D. Pereira, J. Lubian, J.R.B. Oliveira, D.P. de Sousa, L.C. Chamon, Phys. Lett. B 670, 330 (2009)

    Article  ADS  Google Scholar 

  64. National Nuclear Data Center. www.nndc.bnl.gov

  65. M. Cavallaro, F. Cappuzzello, M. Bondì, D. Carbone, V.N. Garcia, A. Gargano, S.M. Lenzi, J. Lubian, C. Agodi, F. Azaiez et al., Phys. Rev. C 88, 054601 (2013)

  66. F. Cappuzzello, D. Carbone, M. Cavallaro, M. Bondì, C. Agodi, F. Azaiez, A. Bonaccorso, A. Cunsolo, L. Fortunato, A. Foti et al., Nat. Commun. 6, 6743 (2015)

    Article  ADS  Google Scholar 

  67. M. Ermamatov, F. Cappuzzello, J. Lubian, M. Cubero, C. Agodi, D. Carbone, M. Cavallaro, J.L. Ferreira, A. Foti, V.N. Garcia et al., Phys. Rev. C 94, 024610 (2016)

    Article  ADS  Google Scholar 

  68. B. Paes, G. Santagati, R. Magana Vsevolodovna, F. Cappuzzello, D. Carbone, E.N. Cardozo, M. Cavallaro, H. García-Tecocoatzi, A. Gargano, J.L. Ferreira, S.M. Lenzi, R. Linares, E. Santopinto, A. Vitturi, J. Lubian, Phys. Rev. C 96, 044612 (2017)

    Article  ADS  Google Scholar 

  69. E.N. Cardozo, J. Lubian, R. Linares, F. Cappuzzello, D. Carbone, M. Cavallaro, J.L. Ferreira, A. Gargano, B. Paes, G. Santagati, Phys. Rev. C 97, 064611 (2018)

    Article  ADS  Google Scholar 

  70. E.N. Cardozo, M.J. Ermamatov, J.L. Ferreira, B. Paes, M. Sinha, J. Lubian, Eur. Phys. J. A 54, 150 (2018)

    Article  ADS  Google Scholar 

  71. V. Guimarãess, E.N. Cardozo, V.B. Scarduelli, J. Lubian, J.J. Kolata, P.D.O. Malley, D.W. Bardayan, E.F. Aguilera, E. Martinez-Quiroz, D. Lizcano, A. Garcia-Flores, M. Febbraro, C.C. Lawrence, J. Riggins, R.O. Torres-Isea, P.N. de Faria, D.S. Monteiro, E.S. Rossi Jr., N.N. Deshmukh, Phys. Rev. C 100, 034603 (2019)

    Article  ADS  Google Scholar 

  72. A.P. Zuker, B. Buck, J.B. McGrory, Phys. Rev. Lett. 21, 39 (1968)

    Article  ADS  Google Scholar 

  73. R. Groleau, W.A. Lanford, R. Kouzes, Phys. Rev. C 22, 2 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China under Grant Nos. 11975040, U1832130 and 11475013 as well as the HIRFL User Project, CAS. The Brazilian authors acknowledge the financial support from CNPq, CAPES and FAPERJ and from INCT-FNA (Instituto Nacional de Ciência e Tecnologia- Física Nuclear e Aplicações) (Proc. No. 464898/2014-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Zhang.

Additional information

Communicated by Alessia Di Pietro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, C.H., Rangel, J., Wu, Y.S. et al. Study of quasi-elastic scattering of \(^{17}\hbox {F}+^{208}\hbox {Pb}\) at energies around Coulomb barrier. Eur. Phys. J. A 57, 143 (2021). https://doi.org/10.1140/epja/s10050-021-00454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00454-3

Navigation